摘要
双曲守恒律是一类重要的偏微分方程,欧拉方程组是流体动力学中最基本的双曲守恒律方程组.利用粘性消失法和最大值原理,并借助于补偿列紧理论建立非严格双曲方程组——含有特殊原项的特定欧拉方程组的整体弱解的存在原理.
Hyperbolic conservation laws were one of the most important classes of non-linear partial differential equations. The Euler equations in gas dymanics were one basic class of hyperbolic conservation laws. In the paper, we applied the method of the vanishing viscosity and the maximum principle together with the theory of compensated compactness to established an existence theorem of global weak solutions for the Cauchy problem of the non-strictly hyperbolic system-a special system of Euler equation with a special source.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2009年第1期13-17,共5页
Journal of Anhui University(Natural Science Edition)
关键词
弱解
粘性消失法
最大值原理
补偿列紧理论
熵-熵流对
源
Dirac测度
weak solution
method of the vanishing viscosity
maximum principle
theory of compensated compactness
entropy-entropy flux pair
source
dirac measure