期刊文献+

Delta Shocks and Vacuum States in Vanishing Pressure Limits of Solutions to the Relativistic Euler Equations 被引量:5

Delta Shocks and Vacuum States in Vanishing Pressure Limits of Solutions to the Relativistic Euler Equations
原文传递
导出
摘要 The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第6期611-622,共12页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No. 10671120) the ShanghaiLeading Academic Discipline Project (No. J50101).
关键词 Relativistic Euler equations in special relativity Pressureless relativistic Euler equations Delta shock waves Vacuum Vanishing pressure limits 相对论性欧拉方程 狭义相对论 δ冲击波 真空态
  • 相关文献

参考文献2

二级参考文献31

  • 1LI YACHUN WANG LIBO.GLOBAL STABILITY OF SOLUTIONS WITH DISCONTINUOUS INITIAL DATA CONTAINING VACUUM STATES FOR THE RELATIVISTIC EULER EQUATIONS[J].Chinese Annals of Mathematics,Series B,2005,26(4):491-510. 被引量:4
  • 2Chen, G. Q. & LeFloch, P., Compressible Euler equation with general pressure law, Arch. Rational Mech. Anal., 153(2000), 221-259. 被引量:1
  • 3Chen, G. Q. & Li, Y. C., Stability of Riemann solutions with large oscillation for the relativistic Euler equations, J. Differential Equations, 202(2004), 332-353. 被引量:1
  • 4Chen, G. Q. & Li, Y. C., Relativistic Euler equations for isentropic fluids: Stability of Riemann solutions with large oscillation, Z. Angew. Math. Phys., 55(2004), 903-926. 被引量:1
  • 5Chen, G. Q. & Rascle, M., Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws, Arch. Rational Mech. Anal., 153(2000), 205-220. 被引量:1
  • 6Chen,G. Q. & Wang, D., The Cauchy Problem for the Euler Equations for Compressible Fluids, Hand book of Mathematical Fluid Dynamics, Vol. 1, Elsevier Science B. V, Amsterdam, The Netherlands,2002, 421-543. 被引量:1
  • 7Dafermos, C. M., Entropy and the stability of classical solutions of hyperbolic systems of conservation laws, In: Recent Mathematical Methods in Nonlinear Wave Propagation (Montecatini Terme, 1994), Lecture Notes in Math., 1640, Springer, Berlin, 1996, 48-69. 被引量:1
  • 8Dafermos, C. M., Hyperbolic Systems of Conservation Laws from Continuum Physics, Springer-Verlag, New York, 1999. 被引量:1
  • 9Ding, X., Chen, G. Q. & Luo, P., Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (Ⅰ)-(Ⅱ), Acta Math. Sci., 5(1985), 483-500, 501-540 (in English); 7(1987), 467-480, 8(1989), 61-94 (in Chinese). 被引量:1
  • 10DiPerna, R., Uniqueness of solutions to hyperbolic conservation laws, Indiana U. Math. J., 28(1979), 137-188. 被引量:1

共引文献3

同被引文献5

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部