期刊文献+

基于RBF神经网络整定的PID控制器设计 被引量:18

Design of PID Controller Based on RBF Neural Network
下载PDF
导出
摘要 对工业控制领域中非线性系统,采用传统PID控制不能获得满意的控制效果。采用基于梯度下降算法优化RBF神经网络,构建其模型,进而编写M语言程序。以整定PID控制器的参数,使系统输出近似跟踪输入。该方法只需给出粗略的PID控制参数,系统的性能依靠神经网络寻优调整,从而可有效地解决经典PID控制方法中控制参数整定困难的问题,且可克服由PID控制参数整定不准给系统带来的不良影响。 Since it can't acquire satisfied control result industry control field. Radial basis function neural network is by using traditional PID control for non-linear systems in optimized based on gradient descent algorithm, and its model is constructed, then the M language program is written. By adjusting parameters of PID controller, the output approximately tracks the input. The method needs only initial parameters of PID controller, and the system performance relies on optimization adjustment of neural network. Thus, it can effectively solve parameter adjustment difficulties in classic PID control method, and can overcome adverse effects created by inaccurate parameter adjustment of PID control.
作者 李小凡
出处 《兵工自动化》 2009年第1期45-46,50,共3页 Ordnance Industry Automation
关键词 PID RBF神经网络 参数整定 PID Radial basis function neural network Parameter adjustment
  • 相关文献

参考文献4

  • 1刘金琨..先进PID控制及其MATLAB仿真[M],2003.
  • 2A.S.Hodel, C.E.Hall. Variable-Structure PID Control to Prevent Integrate Windup[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 442-451. 被引量:1
  • 3Ibrahim Kaya, Nusret Tan, Derek R Atherton. A refinement Procedure for PID Controller[J]. Electrical Engineering (Archiv fur Elektrotechnik), 2006, 88(3): 215-221. 被引量:1
  • 4孙亮..MATLAB语言与控制系统仿真[M],2006.

同被引文献129

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部