期刊文献+

通过红利与再保险最大化股东价值的随机控制模型 被引量:1

A Stochastic Control Model with Maximization of Shareholders Value via Dividend and Reinsurance
下载PDF
导出
摘要 主要考虑一类带红利的比例再保险盈余模型.以股东价值最大化为目标,定义值函数为红利的累积折现,在红利折现率为时间的函数时,推导了相应值函数满足的一类Hamilton-Jaccobi-Bellman(HJB)方程,同时对红利和再保险策略的最优控制进行了分析.最优值函数所满足的HJB方程化为了二阶偏微分方程,一般很难求解出其解析解,可以寻求其数值解,得到最优控制. A class of proportional reinsurance surplus model with dividend process is investigated. The insurer's objective is to maximize the expected value of future, until ruin time, discounted dividend payments. The discounted rate is fluctuating. The Hamilton-Jaccobi-Bellman (HJB) equation of the insurer's value function is first derived. Then, the optimal control on dividend and reinsurance is discussed. The HJB equation of the optimal value function is changed into the partial differential equation of the second order which cannot be generally solved by analitic way. In order to obtain the optimal control, the numerical method is often used to solve the partial differential equation.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期766-770,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金项目(10826098) 国家973项目(2007CB814901) 教育部博士点基金项目(20060255006) 安徽工程科技学院青年基金项目(2007YQ002zd)
关键词 变折现率 红利过程 比例再保险 随机控制 HJB方程 fluctuated discounting rate dividend process proportional reinsurance stochastic control HJB equation
  • 相关文献

参考文献10

  • 1ASMUSSEN S, TAKSAR M. Controlled Diffusion Models for Optimal Dividend Pay-Out[J ]. Insurance: Mathematics and Economics, 1997, 20(1): 1 - 15. 被引量:1
  • 2HΦJGAARD B, TAKSAR M. Optimal Proportional Reinsurance Policies for Diffusion Models [ J ]. Scandinavian Actuarial Journal, 1998(2): 166- 180. 被引量:1
  • 3HΦJGAARD B, TAKSAR M. Optimal Proportional Reinsurance Policies for Diffusion Models with Transaction Costs [J]. Insurance: Mathematics and Economics, 1998, 22 (1): 41- 51. 被引量:1
  • 4杨瑞成,刘坤会.比例再保险模型的最优控制策略研究[J].系统工程学报,2004,19(1):45-51. 被引量:10
  • 5TAKSAR M, HUNDERUP C L. The Influence of Bankruptcy Value on Optimal Risk Control for Diffusion Models with Proportional Reinsurance [ J ]. Insurance: Mathematics and Economies, 2007, ,10(2): 311-321. 被引量:1
  • 6KRVAVYCH Y. Insurer Risk Mangement and Optimal Reinsurance [ D ]. University of New South Wales, Australia, 2005. 被引量:1
  • 7KRVAVYCH Y, SHERRIS M. Enhancing Insurer Value through Reinsurance Optimization [ J ]. Insurance: Mathematics and Economies, 2006, 38(3): 495-517. 被引量:1
  • 8杨步青,叶中行.保险公司的最优再保险和红利分配[J].系统工程,2000,18(6):23-27. 被引量:3
  • 9KARATZAS I, SHREVE S E. Brownian Motion and Stochastic Calculus [ M ]. New York: Springer- Verlag, 1991. 被引量:1
  • 10BJORK T. Arbitrage Theory in Continuous Times[ M]. New York: Oxford University Press, 1998: 198- 227. 被引量:1

二级参考文献4

共引文献9

同被引文献13

  • 1Hjgaard B,Taksar M.Optimal proportional reinsurance policies for diffusion models with transaction costs. Insurance Mathematics Economics . 1998 被引量:1
  • 2Taksar M,Hunderup C L.The influence of bankruptcy value on optimal risk control for diffusionmodels with proportional reinsurance. Insurance Mathematics Economics . 2007 被引量:1
  • 3Krvavych Y,Sherris M.Enhancing insurer value through reinsurance optimization. Insurance Mathematics Economics . 2006 被引量:1
  • 4Hjgaard B,Taksar M.Optimal proportional reinsurance policies for diffusion models. Scandinavian Actuarial Journal . 1998 被引量:1
  • 5Weiyin Fei.Optimal consumption and portfolio choice with ambiguity and anticipation. Journal of Information Science . 2007 被引量:1
  • 6El Karoui N,Pen S,Quenez MC.Backward stochastic differential equations in finance. Mathematical Finance . 1997 被引量:1
  • 7Asmussen S,Taksar M.Controlled diffusion models for optimal dividend pay-out. Insurance: Mathematics and Economics . 1997 被引量:1
  • 8Karatzas I,Shreve SE.Brownian Motion and Stochastic Calculus. . 1991 被引量:1
  • 9Chen Z,Epstein L.Ambiguity, risk and asset returns in continuous time. Econometrica . 2002 被引量:1
  • 10Karatzas I,Shreve SE.Brownian Motion and Stochastic Calculus. . 1991 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部