期刊文献+

基于PCA的复杂网络社区结构分析方法 被引量:9

An Analysis Method Based on PCA for the Community Structure in Complex Networks
下载PDF
导出
摘要 揭示复杂网络的社区结构,对于了解网络结构与分析网络特性有重要意义。将一个网络划分为几个不同的社区,其本质也就是在一定程度上最大化提取网络本身的主要信息,同时略去一些相对次要的信息。主成分分析(Principle Component Analysis,PCA)方法,正是一种从对象中提取主要信息,而忽略相对次要信息的多元统计分析方法。本文基于PCA的信息压缩思想,提出了一种分析复杂网络社区结构的新方法,并将其应用于分析空手道俱乐部网络(Zachary网络)、海豚网络(Lusseau网络)、政治书籍网络(Krebs网络)等网络的社区结构,并且与基于模块度矩阵的谱方法划分结果进行了比较,数值实验结果表明本文提出的方法是可行且有效的。 It is important to find the community structure in complex networks for m,derstanding the structure and characteristics of networks. The nature of partitioning a network into several communities is to extract the major information of the network to the maximal extent. The principle component analysis (PCA) method is just a multi-statistics analysis method which extracts the major information and ignores the less important information at the same time. In this article, based on PCA we propose a new method of analyzing the community structure in complex networks, and then analyze the karate club network (Zachary network), the dolphin social network (Lusseau network) , and the political books network(Krebs network) by using this new method. Further more, we compare the computational results with modularity-based analysis methods. Computational results demonstrate that the proposed method is feasible and effective.
作者 郭崇慧 张亮
出处 《运筹与管理》 CSCD 2008年第6期144-149,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(1057101870431001)
关键词 系统科学 复杂网络 社区结构 主成分分析 systems science complex networks community structure principle component analysis
  • 相关文献

参考文献14

  • 1汪小帆,李翔,陈关荣编著..复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
  • 2王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 3张光卫,康建初,夏传良,李鹤松.复杂网络集团特征研究综述[J].计算机科学,2006,33(10):1-4. 被引量:12
  • 4Kernighan B W, Lin S. An efficient heuristic procedure for portioning graphs[ J]. Bell System Technical Journal, 1970, 49:291-307. 被引量:1
  • 5Fiedler M. Algebraic connectivity of graphs[ J]. Czechoslovak Mathematical Journal, 1973, 23 (98) : 298-305. 被引量:1
  • 6Pothen A, Simon H D, Liou K P. Partitioning sparse matrices with eigenvectors of graphs[ J]. SIAM Journal on Matrix Analysis and Applications, 1990 ,11 (3) : 430-452. 被引量:1
  • 7Wu F, Huberman B A. Finding communities in linear time: a physics approach[J]. The European Physics Journal B, 2004, 38 : 331-338. 被引量:1
  • 8Girvan M, Newman M E J. Community structure in social and biological networks[J]. PNAS, 2001, 99: 7821-7826. 被引量:1
  • 9Newman M E J. Modularity and community structure in networks[ J]. PNAS, 2006, 103 (23) : 8577-8582. 被引量:1
  • 10Newman M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3) : 361-419. 被引量:1

二级参考文献93

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification[M]. Wiley-Interscience, New York, 2001 被引量:1
  • 2L. da F. Costa, R. M. C. Jr. Shape Analysis and Classification: Theory and Practice [M]. CRC Press, Boca Raton, 2001 被引量:1
  • 3Scott J. Social Network Analysis: A Handbook[M]. Sage Publications, London,2000 被引量:1
  • 4Wu F, Huberman B A. Finding communities in linear time: A physics approach[J].Euro. Phys. J B, 2003,38:331-338 被引量:1
  • 5S. Wasserman,K. Faust. Social Network Analysis[M]. Cambridge University Press, Cambridge,1994 被引量:1
  • 6Watts D J, Strogatz S H. Collective dynamics of 'small-world'networks[J]. Nature, 1998, 393:440-442 被引量:1
  • 7Amaral L A N, Scala A, Barth M,_el_emy, and Stanley H E.Classes of small-world networks [M]. Proc. Natl. Acad. Sci. USA 97, 11 149-11 152(2000) 被引量:1
  • 8Newman M E J. The structure of scientic collaboration networks [M]. Proc. Natl. Acad. Sci. USA 98, 404-409 (2001) 被引量:1
  • 9Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology [J]. Computer Communications Review, 1999,29:251-262 被引量:1
  • 10Albert R, Jeong H, Barabasi A L. Diameter of the world-wide web [J]. Nature,1999, 401:130-131 被引量:1

共引文献59

同被引文献90

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部