摘要
与凸函数有关的不等式是基础数学理论的重要工具,尤其在不等式的证明中发挥的作用是无可替代的.其中Jensen不等式与Hadamard不等式更是起到重要作用.Jensen不等式通常用来证明有限不等式,它是将无穷项求和与积分联系起来的重要桥梁.利用Hadamard不等式可以对两个正数的几何平均数与算术平均数加细.
Inequality relevant to convex function is an important tool of basic mathematics theory, which plays irreplaceable role in inequalities proof, especially Jensen Inequality and Hadamard Inequality. Jensen Inequality is used to testify limited inequality generally and it is a bridge to connect sum of infinite seiries with integal of infinite. The Hadamard Inequality is used to densify two positive numbers' arithemetic mean and geometric mean.
出处
《黄石理工学院学报》
2008年第5期47-49,共3页
Journal of Huangshi Institute of Technology