期刊文献+

基于RBF神经网络的入侵检测模型的研究 被引量:3

原文传递
导出
摘要 BP神经网络作为较成熟的技术已被应用于入侵检测技术中,但遇到的诸如执行速度慢、易陷入局部最小值等问题限制了其检测性能的提高,而RBF(Radial Basic Functions径向基函数)神经网络在逼近能力、学习速度及分类能力上都优于BP神经网络。本文设计了一个基于RBF的入侵检测模型,确定了RBF神经网络的结构和学习算法后,用KDD99数据集中的训练数据对系统进行训练,最后,用测试数据对系统进行测试。仿真试验表明,该系统最终具有较高的检测率和很低的误报率。
出处 《网络安全技术与应用》 2008年第12期36-38,共3页 Network Security Technology & Application
  • 相关文献

参考文献6

二级参考文献17

  • 1刘理争,柴乔林.基于神经网络与证据理论的入侵检测系统[J].计算机工程与设计,2005,26(3):697-698. 被引量:6
  • 2[1]Debar H,Becke M,Siboni D.A Neural Network Component for an Intrusion Detection System.In Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy,1992 被引量:1
  • 3[2]Kymei Tan.The Application of Neural Networks to UNIX Computer Security.In Proceedings of the IEEE International Conference on Neural Networks,1995,1: 476-481 被引量:1
  • 4[3]Ghosh A,Schwartzbard A,Schatz A.Learning Program Behavior Pro- files for Intrusion Detection.Proceedings of the Workshop on Intrusion Detection and Network Monitoring, Santa Clara,1999-04-09~04-12 被引量:1
  • 5[4]Cannady J.Artificial Neural Networks for Misuse Detection.Proceedin- gs of the 21st National Information Systems Security Conference, Arlington,VA,1998-10-05~10-08 被引量:1
  • 6[5]Mauricio Jr B J.Neural Networks Applied in Intrusion Detection Systems.Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 98), Anchorage, AK,1998-05 被引量:1
  • 7[6]Lippmann R P,Cunningham R K.Improving Intrusion Detection Performance Using Keyword Selection and Neural Networks.Computer Networks-the International Journal of Computer and Telecommunica- tions Networking,2000,34(4):597-603 被引量:1
  • 8[7]Moody J,Darken C.Learning with Localized Receptive Fields.In: Touretzky D,Hinton D,Sejnowski T (Eds. ),Proceedings of Connectio- nist Models,Carnegie Mellon University,Morgan Kaufmann Publishers, 1988 被引量:1
  • 9[8]Moody J, Darken C. Fast Learning in Networks of Locally- tuned Processing Units. Neural Computation,1989,(1): 281-294 被引量:1
  • 10[9]Piggio T, Girosi F. A Theory of Networks for Approximation and Learning. AI Memo, Artificial Intelligence Laboratory,Massachusetts Institute of Technology, Cambridge Mass,1989,(1140) 被引量:1

共引文献12

同被引文献11

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部