期刊文献+

基于Matlab的RBF入侵检测模型研究

ON RBF INTRUSION DETECTION MODEL BASED ON MATLAB
下载PDF
导出
摘要 针对目前入侵检测系统不能有效检测未知攻击行为、学习能力较差的问题,根据RBF神经网络的自学习、收敛速度快的特性,将RBF神经网络与入侵检测技术相结合,提出了一种RBF入侵检测模型,并对模型各个组成部分进行了分析,最后采用DAR-PA入侵检测数据库中的部分数据,在Matlab下进行了仿真实验。实验结果表明,此模型具有较高的检测率和较低的误报率,可有效地检测出已知和未知攻击行为,有一定的应用价值。 In order to solve the problems that intrusion detection system at present can not effectively discover the unknown attack hehaviours and is weak in learning, according to the characters of RBF neural network in self-learning and quick convergence rates,an RBF intrusion detection model is proposed in combination of the RBF neural network with intrusion detection technology, and each component of the model is also analyzed. At last, the simulation experiment under Matlab is carried out with the use of partial data in DARPA intrusion detection database. The result of the experiment indicates that the model makes high detection rate and low error reporting rate and is able to detect known and unknown intrusion behaviours effectively,so it has certain applied values.
机构地区 黑龙江科技学院
出处 《计算机应用与软件》 CSCD 2009年第6期278-281,共4页 Computer Applications and Software
基金 黑龙江科技学院引进人才科研启动基金项目(04-23) 黑龙江省教育厅科学技术研究项目(10553089)
关键词 入侵检测 RBF网络 MATLAB仿真 Intrusion detection RBF neural network Matlab simulation
  • 相关文献

参考文献8

二级参考文献23

  • 1刘理争,柴乔林.基于神经网络与证据理论的入侵检测系统[J].计算机工程与设计,2005,26(3):697-698. 被引量:6
  • 2鲍立威,何敏,沈平.关于BP模型的缺陷的讨论[J].模式识别与人工智能,1995,8(1):1-5. 被引量:43
  • 3CANNADY James. Artificial Neural Networks for Misuse Detection[C]. Arlington VA : NISSC'98,1998. 443-456. 被引量:1
  • 4Fox K,Henning R,Reed J,et al A Neural Network Approach Towards Intrusion Detection.Tech.Rep,Harris Corporation,1990—07. 被引量:1
  • 5Cannady J,Mahaffey J.The Application of Artificial Neural Networksto Misuse Detection:Initial Results.Proceedings of First International Workshop on the Recent Advances in Intrusion Detection.Louvain—la—Neuve.Belgium.1998—09-14. 被引量:1
  • 6Hirasawa K,Oka S,Sakai S,et a1.Learning Petri Network with Route Control.In Proc IEEE Int.Conf.Systems,Man,Cybernetics,1995:2706-2711. 被引量:1
  • 7Mukkamala S.Janoski G Sung A.Intrusion Detection:Suppoa Vector Machines and Neural Networks[DB/OL].http://www computer.org/students/looking/2002fall/3.pdf.2002. 被引量:1
  • 8KDD2CUP299 Task Description[EB/OL].http://kdd.ics.uci.edu/databases/kddcup99/task.html. 被引量:1
  • 9Nong Ye.Probabilistic techniques for intrusion detection based on computer audit data[J].IEEE Trans on System,Man,Cybernetics,2001,31(4):266-274. 被引量:1
  • 10Nong Ye.Multivariate statistical analysis of audit trails for hostbased intrusion detection[J].IEEE Trans on Computers,2002,51(7):810-820. 被引量:1

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部