期刊文献+

一种面向物流数据分析的路径序列挖掘算法ImGSP 被引量:6

ImGSP:a path sequence mining algorithm for product flow analysis
下载PDF
导出
摘要 为了有效地挖掘物流管理系统中的物流频繁路径序列模式,提出了一种针对物流数据分析的路径序列挖掘算法ImGSP算法.ImGSP算法通过对原始路径数据库筛选,选出路径序列长度大于或等于候选序列长度的路径序列,有针对性地产生过度候选序列,来约减候选序列.实验结果表明:ImGSP算法能够有效地减少候选序列数量,生成频繁路径序列模式,进而产生物流中有用的规则.该方法不仅缩小了扫描数据库的规模,而且减少了生成频繁序列的候选序列集合. Currently the data in logistic system is very huge,so the efficiency of mining frequent path sequences needs to be improved.Therefore,an efficient algorithm-ImGSP(improved generalized sequential patterns)for analyzing logistic data is presented.In this method the original database is screened to find the path sequences that is greater than or equal to the candidate sequences in the length,and then generate the candidate sequences through generating the transitional candidate sequences.The experiment results show that the ImGSP algorithm can effectively generate frequent patterns by reducing the volume of sequences,and then find the valuable rules.The method not only reduces the size of scanning database but also reduces the candidate sequences set.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期970-974,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60773103,60673060,70772059) 中国博士后科学基金资助项目(20070420954) 江苏省“青蓝工程”基金资助项目.
关键词 物流管理系统 数据挖掘 关联规则 序列模式挖掘 logistic management system data mining association rules sequential patterns mining
  • 相关文献

参考文献11

  • 1Han J, Kamber M. Data mining concepts and techniques [ M ]. 2nd ed. 北京:机械工业出版社, 2006 : 489 - 513. 被引量:1
  • 2Park J S, Psy U. An efficient parallel data mining for association rules [ C ]//Proc of the 4th on Information and Knowledge Management. New York: ACM Press, 1995 : 31 - 36. 被引量:1
  • 3Cheung D W, Hart J, Ng V T, et al. A fast distributed algorithm for mining association rules [ C ]//Proc of the 4th International Conference on Parallel and Distributed Information Systems. Los Alamitos, USA:IEEE Computer Society Press, 1996 : 31 - 44. 被引量:1
  • 4倪旻,徐晓飞,邓胜春.基于关联规则的零部件供应商选择优化[J].计算机集成制造系统-CIMS,2004,10(3):317-321. 被引量:4
  • 5Zaki M. Spade: an efficient algorithm for mining frequent sequences [ J]. Machine Learning, 2001, 41 (2) : 31 -60. 被引量:1
  • 6Pei J, Han J, Pinto H, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth [ J ]. IEEE Transactions on Knowledge & Data Engineering, 2004,16( 1 ) : 1424 - 1440. 被引量:1
  • 7Zhang Changhai, Hu Kongfa, Liu Haidong, et al. FMGSP: an efficient method of mining global sequential patterns[ C ]//Proc of the 4th International Conference on Fuzzy Systems and Knowledge Discovery. Los Alamitos : IEEE Computer Society, 2007 : 761 - 765. 被引量:1
  • 8陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 9胡孔法,张长海,陈崚,宋爱波,达庆利.分布式环境下全局序列模式挖掘技术研究[J].计算机集成制造系统,2007,13(11):2229-2235. 被引量:2
  • 10Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements [ C ]// Proc of 5th International Conference on Extending Database Technology. Heidelberg : Springer, 1996 : 3 - 17. 被引量:1

二级参考文献35

共引文献32

同被引文献39

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部