期刊文献+

基于噪声整形的语音去噪算法 被引量:7

Speech Denoising Based on Noise Reshaping
原文传递
导出
摘要 针对非平稳环境噪声提出一种基于噪声整形的语音去噪算法。该算法以最小感知均方误差为准则,在Wiener滤波的基础上,采用听觉感知加权函数修正Wiener滤波方程,实现对噪声谱整形,使噪声谱分布特性跟随语音谱而变;同时引入频率补偿因子克服非平稳噪声谱对语音影响的不均匀性;采用快速噪声估计算法实现对非平稳的估计。实验表明,该算法能更有效地抑制背景噪声,提高了去噪后的语音质量。 In this paper, a new speech denoising algorithm based on noise reshaping is proposed for non-stationary environments. The perceptual weighting function is adopted to modify the traditional Wiener filter equation via reshaping the noise spectrum based on the minimum perceptual mean square error criteria. The noise spectrum can be redistributed according to the real speech. The frequency compensation factor is introduced to compensate the ununiformity resulted f frequencies. The fast noise estimation rom alg that the algorithm can effectively reduc the orit e th in hm fluence of non-stationary noise on the speech spectrum at various is adopted to estimate the noise. The simulation result indicates e residual noise and improve the quality of the speech
出处 《通信技术》 2008年第12期253-255,258,共4页 Communications Technology
基金 国家自然科学基金资助项目(No:60572074)
关键词 噪声估计 非平稳信号 语音去噪 感知加权滤波器 噪声整形 Noise estimatien Non-stationary signal Speech denoising Perceptual weighting filter Noisereshaping
  • 相关文献

参考文献8

  • 1姚天任,孙洪编..现代数字信号处理[M].武汉:华中理工大学出版社,1999:439.
  • 2Tsoukalas D E, Mourjopoulos J N, Kokkinakis G. Speech enhancement based on audible noise suppression[J]. IEEE Trans. Speech and Audio Processing, 1997,5:497 -514 被引量:1
  • 3Sarikaya R Hansen J H L. Auditory masking threshold estimation for broadband noise sources with application to speech enhancement[C]. In Proc Euro speech, 1999:2571-2574. 被引量:1
  • 4Nathalie Virag Single channel speech enhancement based on masking properties of the human auditory system[J] . IEEE Trans. Speech and Audio Processing, 1999, 7(2): 126- 137. 被引量:1
  • 5刘海滨,吴镇扬,赵力,曾毓敏.非平稳环境下基于人耳听觉掩蔽特性的语音增强[J].信号处理,2003,19(4):303-307. 被引量:16
  • 6Johnston J D. Transform coding of audio signals using perceptual noise criteria[J]. IEEE Journal on Selected Areas in Comm, 1988,6: 314-323. 被引量:1
  • 7Tsoukalas D E, Paraskevasa M. Speech Enhancement Using Psicho-acoustic Criteria[A]. Proc. IEEE ICASSP 1993[C].1993:359- 361. 被引量:1
  • 8Hu Y, Loizou P C. A Perceptually Motivated approach for Speech Enhancement[J]. IEEE transactions on speech and signal Processing, 2003, 11 (5) : 457-465 被引量:1

二级参考文献13

  • 1..http://spib.rice.edu/spib/select_noise.html.,. 被引量:1
  • 2M. Berouti, R. Schwartz, J. Makhoul. Enhancement of speech corrupted by acoustic noise. Proc. IF.F.F. ICASSP,Washinggton, DC, Apr. 1979; 208-211. 被引量:1
  • 3E Lockwood, J. Boudy. Experiments with a nonlinear spectral subtractor(NSS), hidden Markov models and projection for robust recognition in cars. Speech Communication. 1992; 11: 215-228. 被引量:1
  • 4Boh Lim Sim, Yit Chow Tong etc.. A parametric formulation of the generalized spectral subtraction method. IEEE.Transaction on Speech and Audio Processing. 1998; 6(4):328-337. 被引量:1
  • 5Nathalie Virag, Single channel speech enhancement based on masking properties of human auditory system. IEEE Transactions on Speech and Audio Processing. 1999; 7(2):126-137. 被引量:1
  • 6I. Cohen, B. Berdugo. Speech enhancement for nonstationary noise environments. Signal Processing. 2001; 81:2403-2418. 被引量:1
  • 7Y. Epharim, D. Malah. Speech enhancement using a minimum mean square log-spectral amplitude estimator.IEEE. Transactions on Acoustics. Speech, and Signal Processing. 1984; 32(6): 1109-1121. 被引量:1
  • 8E M. Crozier, B.M.G. Cheetham etc. Speech enhancement employing spectral subtraction and linear predictive analysis. Electronics Letters. 1993; 29 (12): 1094-1095. 被引量:1
  • 9R. Martin. Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE.Transactions on Speech and Audio Processing. 2001; 9(5):504-512. 被引量:1
  • 10T. Painter, A. Spanias. Perceptual coding of digital audio.Proe. Of the IEEE. 2000; 88(4): 451-512. 被引量:1

共引文献15

同被引文献30

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部