期刊文献+

自适应小波阈值语音增强新方法 被引量:8

A new approach for adaptive wavelet threshold speech enhancement
下载PDF
导出
摘要 针对单一小波阈值语音增强方法降低语音可懂度这一问题,提出一种基于自适应小波阈值的语音增强新方法.根据噪声帧频谱的平整度判断出噪声的类型,即是白噪声(含频响曲线比较平整的有色噪声)还是频响曲线不平整的有色噪声.由于不同类型的噪声具有不同性质的L ipsch itz指数,对两种不同的噪声类型分别采用不同的自适应小波阈值对带噪语音信号进行增强处理.用计算机仿真和实际环境录制的语音数据对该方法的性能进行了测试,实验结果表明在两种实验数据情况下,该方法均具有较好的噪声抑制能力. To solve the problem of poor understandability of the speech signals processed by the fixect wavelet threshold, a new speech enhancement method of adaptive wavelet thresholds is presented. The types of additive noise are to be ascertained firstly according to the differences in the spectrum amplitude between white noise (including color noise with flatting spectrum amplitude) and color noise with varying spectrum amplitude. Since Lipschitz exponent varies with the types of noise and speech, different kinds of the adaptive threshold function of the wavelet transform are used to enhance the noisy speech signals according to the types of noise. The proposed scheme was evaluated on noisy speech signals simulated by computer and recorded in real environment separately. Experimental results show the effectiveness of the proposed method.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2006年第4期561-566,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60575011 60372082)
关键词 语音增强 自适应小波阈值 小波变换 speech enhancement adaptive wavelet threshold wavelet transform
  • 相关文献

参考文献11

  • 1GANNOT S, BURSHTEIN D, WEINSTEIN E.Iterative and sequential Kalman filter-based speech enhancement algorithms [J]. IEEE Trans Speech and Audio Process, 1998, 6(4): 373-385 被引量:1
  • 2LEE B G, LEE K Y, ANN S. An EM-based approach for parameter enhancement with an application to speech signals [J]. Signal Process,1995, 46(1): 1-14 被引量:1
  • 3KIM J B, LEE K Y, LEE C W. On the applications of the interacting multiple model algorithm for enhancing noisy speech [J]. IEEE Trans Speech and Audio Process, 2000, 8(3): 349-352 被引量:1
  • 4HASAN M K, SALAHUDDIN S, KHAN M R. A modified a priori SNR for speeeh enhaneement using spectral subtraction rules [J]. IEEE Signal Process Lett, 2004, 11(4): 450-453 被引量:1
  • 5GUSTAFSSON H, NORDHOLM S E, CLAESSON I. Spectral subtraction using reduced delay convolution and adaptive averaging [J]. IEEE Trans Speech and Audio Process, 2001, 9(8) : 799-807 被引量:1
  • 6EPHRAIM Y, MALAH D. Speech enhancement using a minimum mean square error short-time spectral amplitude estimator [J]. IEEE Trans Acoust, Speech, Signal Process, 1984, 32(6):1109-1121 被引量:1
  • 7EPHRAIM Y, MALAH D. Speech enhancement using a minimum mean-square error log-spectral amplitude estimator [J]. IEEE Trans Acoust,Speech, Signal Process, 1985, 33(2): 443-445 被引量:1
  • 8EPHRAIM Y. A Bayesian estimation approach for speech enhancement using hidden Markov models[J]. IEEE Trans Signal Process, 1992, 40(4):725-735 被引量:1
  • 9孟哲.基于小波变换的多尺度多阈值语音增强方法[J].武汉理工大学学报(交通科学与工程版),2001,25(2):209-212. 被引量:4
  • 10TANYER S G, OZER H. Voice activity detection in nonstationary noise [J]. IEEE Trans Speech and Audio Process, 2000, 8(4): 478-482 被引量:1

二级参考文献3

共引文献168

同被引文献92

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部