期刊文献+

高分辨率SAR图像机动目标纹理特征提取与分析 被引量:4

Texture Feature Extraction and Analyses for Mobile Targets in High-Resolution SAR Imagery
下载PDF
导出
摘要 该文基于高频区目标散射中心理论分析了高分辨率SAR图像机动目标和自然地物后向散射特性的差异,探讨了两类目标纹理现象产生的机理,并在此基础上,分别基于局部统计量和分形模型提取机动目标的纹理特征,给出了鉴别特征优选方法。文中利用MSTAR的车辆目标实测数据检验了该文计算的纹理特征,给出纹理特征优选结果以及各纹理特征鉴别的性能,结果表明该文提取的纹理特征具有较好的鉴别性能,能消除大部分自然地物产生的虚警。 Based on the theory of scattering center, the difference of back-scattering characteristics between the mobile targets and natural terrains in high-resolution SAR imagery is investigated, and the principles of texture features of the two kind targets are discussed in this paper. And then, the texture features are extracted by using respectively the local statistics and fractal models, and the method of selecting the best features is presented. The real vehicle target SAR image data in MSTAR database are used to test the texture features, the best features are selected and the discriminating performances of those features are shown. The results show that those features are good and can be used to eliminate the most false alarms of natural terrains.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第12期2809-2812,共4页 Journal of Electronics & Information Technology
关键词 SAR图像 机动目标鉴别 纹理特征 感兴趣区域 SAR imagery Mobile target discrimination Texture feature Region of interest
  • 相关文献

参考文献8

  • 1Oliver C and Quegan S. Understanding Synthetic Aperture Radar Images. Boston, London, Artech House, 1998: 277-296. 被引量:1
  • 2Lee C P and Randolph L M. Attributed scattering centers for SAR ATR. IEEE Trans. on Image Processing, 1997, 6(1): 79-91. 被引量:1
  • 3Gan Du and Tat Soon Yeo. A novel lacunarity estimation method applied to SAR image segmentation. IEEE Trans. on Geoscience and Remote Sensing, 2002, 40(12): 2687-2691. 被引量:1
  • 4Kreithen D E, Halversen S D, and Owirka G J. Discriminating targets from clutter. Lincoln Laboratory Journal, 1993, 6(1): 25-52. 被引量:1
  • 5Novak L M, Halversen S D, and Owirka G J, et al.. Effects of polarization and resolution on SAR ATR. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(1): 102-116. 被引量:1
  • 6Zhang Cui, Zou Tao, and Wang Zhengzhi. A target discrimination algorithm for high resolution SAR imagery. IEEE Proceeding of International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 2003: 863-867. 被引量:1
  • 7Myint Soe Win and Lain Nina. A study of lacunarity-based texture analysis approaches to improve urban image classification. Computers, Environment and Urban Systems, 2005, 29(5): 501-523. 被引量:1
  • 8Dong P. Test of a new lacunarity estimation method for image texture analysis. International Journal of Remote Sensing, 2000, 21(17): 3369-3373. 被引量:1

同被引文献36

  • 1方圣辉,朱武.辅以纹理特征的SAR图像分类研究[J].测绘通报,2001(10):12-14. 被引量:11
  • 2关新平,刘冬,唐英干.基于可分离性判据的自适应加权纹理图像分割[J].计算机应用研究,2005,22(11):233-235. 被引量:1
  • 3Ouchi K, Tamaki S, Yaguchi H, et. al. Ship detection based on coherence images derived from cross correlation of multilook SAR images [ J ]. IEEE Transactions on Geoscience and Remote Sensing letters, 2004, 1 (3) : 184 - 187. 被引量:1
  • 4Benelli G, Garzelli A, Mecocci A. Complete processing system that uses fuzzy logic for ship detection in SAR images [ J ]. IEE Proc-Radar,Sonar Naving, 1994, 141(4): 181-186. 被引量:1
  • 5Chiang H C, Moses R L, Potter L C. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition[ J]. Pattern Recognition, 2001, 34 : 1539 - 1553. 被引量:1
  • 6Gao G, Kuang G Y, Zhang Q, et al. Fast detecting and locating groups of targets in high-resolution SAR images [ J ]. Pattern Recognition, 2007, 40(4) : 1378 - 1384. 被引量:1
  • 7Zhang H, Fritts J E, Goldman S A. Image segmentation evaluation: A survey of unsupervised methods [ J ]. Computer Vision and Image Understanding, 2008, 110 : 260 - 280. 被引量:1
  • 8Bhanu B, Lin Y Q. Genetic algorithm based feature selection for target detection in SAR images [ J ]. Image and Vision Computing, 2003, 21: 591!-608. 被引量:1
  • 9Burl M C, Owirka G J, Novak L M. Texture discrimination in synthetic aperture radar imagery [ C ]. Twenty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove,CA, 1989, 399-404. 被引量:1
  • 10Lin H, Venetsanopoulos A N. A weighted minimum distance classifier for pattern recognition [ C ]. Proceedings of the 6th Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 1993:904-907. 被引量:1

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部