期刊文献+

基于峰值区域的高分辨率极化SAR舰船目标特征分析与鉴别 被引量:3

Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone
下载PDF
导出
摘要 针对高分辨率SAR舰船目标检测中存在类似舰船的干扰目标造成虚警的问题,该文设计了一种峰值区域极化特征提取方法。该方法通过对比水面船只和干扰目标峰值区域Krogager分解中螺旋体散射比重的差异,对两类目标进行了鉴别分析。利用RADARSAT-2的C波段全极化数据对方法的有效性进行验证,验证结果表明该方法能有效地鉴别船只目标与岛屿、防浪堤、海面平台、桥梁等干扰目标,减少SAR舰船目标检测中存在的虚警。 To deal with the problem of false alarm in the ship detection, a method base on proportion of spiral scattering in the peak zone is proposed. By comparing the proportion of spiral scattering in the peak zone, which is available from Krogager decomposition, the ships and interfering targets are identified and analyzed. The effectiveness of this method is justified with C-band full-polarization data from RADARSAT-2. The result show that this method can discriminate ships from interfering targets such as island, water-break, nautical platforms and bridges, thus reducing the false alarm rate of ship targets detection in SAR images.
出处 《雷达学报(中英文)》 CSCD 2015年第3期367-373,共7页 Journal of Radars
基金 国家自然科学基金(61201445 61179017) 国防预研基金资助课题
关键词 合成孔径雷达(SAR) 极化分解 高分辨率 舰船检测 Synthetic Aperture Radar (SAR) Polarization decomposition High-resolution Ship detection
  • 相关文献

参考文献15

二级参考文献42

  • 1高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值提取及峰值稳定性分析[J].电子与信息学报,2005,27(4):561-565. 被引量:7
  • 2高贵,计科峰,匡纲要,李德仁.高分辨率SAR图像目标峰值特征提取[J].信号处理,2005,21(3):232-235. 被引量:1
  • 3关新平,刘冬,唐英干.基于可分离性判据的自适应加权纹理图像分割[J].计算机应用研究,2005,22(11):233-235. 被引量:1
  • 4MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets for vessel classification studies [J]. IEEE Trans Geosci Remote Sensing, 2006, 4412: 3517-3526. 被引量:1
  • 5MARGARIT G, FABREGAS X, MALLORQUI J J. Study of the vessel speed and sea swell effects on simulated polarimetric high resolution SAR images [G]//STEIN T I. Proceedings of IGARSS2004. US IEEE 2004 International Geoscience and Remote Sensing Symposium. 2004: 603-606. 被引量:1
  • 6BACHMANN C M, MUSMAN S A, SCHULTZ A. Lateral inhibition neural networks for classification of simulated radar imagery[G]// IEEE International Conference on Neural Networks. Baltimore: Lucas S M, 1992:115-120. 被引量:1
  • 7OSMAN H, BLOSTEIN S, GAGNON L. Classification of ships in airborne sar imagery using back propagation neural networks [J]. SPIE Proc, 1997, 3161:126-136. 被引量:1
  • 8ASKARI F, ZERR B. Automatic approach to ship detection in spaceborne synthetic aperture radar imagery: an assessment of ship detection capability using RADARSAT[R]. Technical Report SACLANTCEN-SR-338. La Spezia, Italy: SACLANT Undersea Research Centre, ,2000.36. 被引量:1
  • 9王隽,杨劲松,黄韦艮,等.基于极化SAR目标分解理论的船只几何结构初步分析[G]//第二届微波遥感技术研讨会.北京:中国空间科学学会,2006:152-160. 被引量:1
  • 10张晰.星载SAR舰船目标探测实验研究[M].青岛:中国海洋大学,2008. 被引量:1

共引文献157

同被引文献22

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部