摘要
本文将X射线荧光分析技术用于石油钻井现场对岩屑进行在线跟踪监测分析,针对粉末状岩屑现场连续取样,并采用多层前馈神经网络BP(Back Propagation)模型,通过数据处理将不同岩层岩性用二进制代码描述,直接输出岩性或岩层的目标向量。
X-ray fluorescence analysis has been used to track and monitor the on-site analysis of rock cuttings in oil drilling field. BP (Back Propagation) models of multi-layer neural networks were established to describe different lithology of strata by the binary code through continuously sampling powder-like rock cuttings at the scene.
出处
《核技术》
CAS
CSCD
北大核心
2008年第12期910-914,共5页
Nuclear Techniques
关键词
X射线荧光分析
岩性识别
神经网络
X-ray fluorescence analysis, Lithology identification, Neural networks