摘要
在文献[6]中,通过在一格蕴涵代数L与它的素理想空间上的开闭下集构成的格蕴涵代数{X_a|a∈L}之间引入一映射,得到了格蕴涵代数L的一个表示。利用集合列的极限对格蕴涵代数的表示进行了讨论,得出了格蕴涵代数的表示中单调集合列及一般集合列无限运算的一系列性质;又根据格蕴涵代数与格蕴涵代数的表示之间是同构的,进而得出了格蕴涵代数中任意子集无限运算的若干性质。
In the literature, a representation of lattice implication algebra L was obtained by introducing a map from a lattice implication algebra L to another lattice implication algebra { Xa | a ∈ L } generated by the clopen lower sets in the prime ideal of the former. In this paper, we consider the representation of lattice implication al- gebra in terms of the limits of sequences of subsets, and obtain some results on the infinite operations of monotonic sequences of subsets, since a lattice implication algebra is isomorphic to its representation.
出处
《绵阳师范学院学报》
2008年第11期25-29,共5页
Journal of Mianyang Teachers' College
关键词
格蕴涵代数
素理想
格蕴涵同构
lattice implication algebra
prime ideal
lattice implication isomorphism