摘要
根据逻辑代数方程理论,提出了格蕴涵代数方程的概念.讨论了格蕴涵代数L中的几种基本类型的一元格蕴涵代数方程,给出了方程的可解性判别条件.在此基础之上,证明了方程的解集构成L的凸子格.
According to the theory about logic algebraic equation, the notion of lattice implication algebraic equation was proposed. Some typical one varialbe lattice implication algebraic equations in lattice implication algebras L were discussed. The necessary and sufficient conditions for existance of solutions for the equations were presented. Based on the discussions, it was proved that the solution sets of the equations are convex sublattices of L.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2005年第6期842-845,共4页
Journal of Southwest Jiaotong University
基金
国家自然科学基金资助项目(6047022)
关键词
格蕴涵代数
格蕴涵代数方程
凸子格
可解性
解集
lattice implication algebra
lattice implication algebraic equation
convex sublattice
solvability
solution set