期刊文献+

Ginzburg-Landau方程的周期波解与孤子解 被引量:4

Periodic Wave and Soliton Solutions of the Ginzburg-Landau Equation
下载PDF
导出
摘要 通过辅助函数方法,研究并获得了Ginzburg-Landau方程在方程系数满足一定关系的条件下的新的精确解——周期波解与孤子解. By means of the auxiliary function metod and F-expansion method, we study the solutions of the Ginzburg-Landau equation. A new exact solution of the Ginzburg-Landau equation is obtained, which are period- ic wave solutions and soliton solutions, provided that the coefficients on the equation areconstrained by certain relations.
作者 李自田
出处 《曲靖师范学院学报》 2008年第6期30-33,共4页 Journal of Qujing Normal University
关键词 Ginzburg-Lanndau方程 辅助函数法 Jacobi-椭圆函数 周期波 孤子 Ginzburg-Landau equation auxiliary-function F-expansion funtions Jacobi elliptic-function periodic wave soliton
  • 相关文献

参考文献10

  • 1Roger Temam.Infinte-Dimensional Dynamical Systems inMechanics and Physics[]..2000 被引量:1
  • 2Fang Fang,Yan Xiao.Stability of chirped bright and darksoliton-like solutions of the cubic complex Ginzburg-Landauequation with variable coefficients[].Optics Communica-tions.2006 被引量:1
  • 3Abdul-Majid.Wazwaz.Explicit and implicit solutions for theone-dimensional cubic and quintic complex G-L.equation[].Applied Mathematics Letters.2006 被引量:1
  • 4MJ.Ablowitz,PA.Clarkson.Solitons,Nonlinear EvolutionEquations and Inverse Scattering Transform[]..1990 被引量:1
  • 5W van Saarloos,P C Hohenberg.Spatiotemporal chaos inthe one-dimensional complexGinzburg-Landauequation[].PhysicaD:Nonlinear phenomena.1992 被引量:1
  • 6Zhengde Dai et al.Exact homoclinic wave and soliton so-lutions for the 2D Ginzburg-Landau equation[].PhysicsLetters A.2008 被引量:1
  • 7Huiqun Zhang.New exact travelling wave solutions forsome nonlinear evolution equations,Part II[].Chaos Solitons Fractals.2008 被引量:1
  • 8F. Cariello and M. Tabor.Painlevé expansions for nonintegrable evolution equations[].Physica D Nonlinear Phenomena.1989 被引量:1
  • 9Blennerhassett,P. J.On the generation of waves of wind[].Philos Trans Roy Soc Lond Ser A.1980 被引量:1
  • 10Moon,H. T.,Huerre,P.,Redekopp,L. G.Three frequency motion and chaos in the Ginzburg-Landau equation[].Physical Review Letters.1982 被引量:1

同被引文献46

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部