期刊文献+

基于小波-Contourlet变换的Cycle spinning硬阈值图像去噪方法 被引量:4

Wavelet-based Contourlet transform for image de-noising using cycle spinning
原文传递
导出
摘要 综合考虑小波变换的特点以及Contourlet变换对二维光滑图像有很好的近似特性和对曲线有更好的"稀疏"表示的特点,提出了一种基于小波-Contorlet变换的图像硬阈值去噪方法,并用Cycle spinning去除图像中小波-Con- tourlet变换平移变异性而产生的伪吉布斯现象。实验结果表明:该方法与采用Cycle spinning的小波和Contourlet去嗓算法相比,PSNR分别提高了0.4~1.6和0.2~1.0。与其它去噪算法相比,这种方法能有效地去除图像中的噪声,具有更高的PSNR值,能更好地保留图像的纹理和细节。 Due to the characteristics of the wavelet transform, the good approximation of the Contourtet transform to the 2D smooth image and the ability of the better "sparse" expression of curve, a new scheme for image de-noising based on the wavelet-based contourlet transform is proposed. It uses cycle spinning to dislodge the Gibbs-like phenomenon which is caused by the translation variability of the wavelet transform in the image. Experimental results indicate that compared to the de-noising schemes of cycle spinning-based the wavelet and the contourlet transforms, this scheme' s PSNR increase about 0.4-- 1.6 and 0.2-1.0 respectively. Compared to other de-noising schemes, this scheme can dirninate the noise in images more effectively, which has much larger values of PSNR and can preserve the detail and the texture of the image more perfectly.
出处 《光学技术》 CAS CSCD 北大核心 2008年第6期854-857,861,共5页 Optical Technique
基金 国家自然科学基金资助项目(30571455) 黑龙江省科技攻关资助项目(GC05A504) 国家948计划资助项目(2005-4-62)
关键词 信息光学 图像处理 图像去噪 小波-CONTOURLET变换 Cycle SPINNING information optics image processing image de-noising wavelet-based contourlet transform cycle spinning
  • 相关文献

参考文献11

  • 1Ramin Eslami, Hayder Radha. Wavelet-based Contourlet transform and Its application to Image coding[J]. Proceedings of IEEE ICIP, 2004, 5:3189-3192. 被引量:1
  • 2Minh N Do. Martin Vetterli The Contourlet Transform: An Efficient Directional Multiresolu-tion Image Representation [J ]. IEEE Trans Image Processing,2005, 14(12) :2091-2106. 被引量:1
  • 3M N Do. Directional multiresolution image representations [ D]. PhD thesis, EPEL, Lausanne, Switzerland, 2001. 被引量:1
  • 4R R Coifman, D L Donoho. Translation-Invariant De-Noising[A]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103 [C]. New York: Springer-Verlag, 1995. 125-150. 被引量:1
  • 5Fletcher A K, Ramchandran K, Goyal V K. Wavelet denoising by recursive cycle spinning[ A]. Proc IEEE Intemational Conference Image Processing[C]. Rochester, NY: 2002. 873-876. 被引量:1
  • 6Eslami R, Radha H. The contourlet transform for image de-noising using cycle spinning[J]. Pacific Grove, 2003, 2:1982-1986. 被引量:1
  • 7董鸿燕,扬卫平,沈振康.基于Contourlet变换的自适应图像去噪方法[J].红外技术,2006,28(9):552-556. 被引量:18
  • 8A L Da Cunha, J Zhou, M N Do. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications [J]. IEEE Trans Image Processing, 2006, 15(10): 3089-3101. 被引量:1
  • 9STARCK J L, CANDESE J, EONOHO DL. The Curvelet Tramform for Image Denoising [J]. IEEE Tram Image Processing, 2002, 11 (6):670-684. 被引量:1
  • 10Donoho D L. De-Noising by Soft-Thresholding[J]. IEEE Tram IT, 1995,41(3) :613-627. 被引量:1

二级参考文献13

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2谭毅华,田金文,柳健.基于小波局部统计特性的图像去噪方法[J].信号处理,2005,21(3):296-299. 被引量:8
  • 3冯鹏,米德伶,潘英俊,魏彪,金炜.改进的Curvelet变换图像降噪方法[J].光电工程,2005,32(9):67-70. 被引量:14
  • 4Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans.on Information Theory. 1995, 41: 613-627. 被引量:1
  • 5Yuan X H, Buckles B P. Subband noise estimation for adaptive wavelet shrinkage[A]. ICPR 2004. Proceedings of the 17th International Conference on Pattern Recognition[C]. 2004, 4: 858-888. 被引量:1
  • 6Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Trans. Image Proc. 1998, 7(1):82-90. 被引量:1
  • 7Chang S G, Yu B, Vetterli M. Adaptive wavelet threshoding for image denoising and compression[J]. IEEE Trans. Image Proc. 2000, 9(9):1532 - 1546. 被引量:1
  • 8Do M N, Vetterli M. Contourlets. A directional multiresolution image representation [A]. Proc of IEEE International Conference. on Image Processing[C]. Rochester, NY: 2002. 357-360. 被引量:1
  • 9Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J] . IEEE Trans. Image Processing.2005: 1-16. 被引量:1
  • 10Burr P J, Adelson E H. The Laplacian Pyramid as a Compact Image Code[J]. IEEE Trans, Communications. 1983, 31(4): 532-540. 被引量:1

共引文献17

同被引文献46

  • 1梁栋,李瑶,沈敏,高清维,鲍文霞.一种基于小波-Contourlet变换的多聚焦图像融合算法[J].电子学报,2007,35(2):320-322. 被引量:30
  • 2Burr P J, Adelson E H. The 1-aplacian pyramid as a compact image code [J]. IEEE Transactions on Communications, 1983, 31 (4) : 532-540. 被引量:1
  • 3Pajares G, de Ia Cruz J M. A wavelet-based image fusion tutorial [J]. Pattern Recognition, 2004, 37:1855-1872. 被引量:1
  • 4Do M N, Vetterli M. The contourlet transform: An efficient directional multiresonlution image representation [J ]. IEEE Trains on Image processing, 2005, 14 (12) : 2019-2016. 被引量:1
  • 5A L Cunha, J Zhou, M N Do. The nonsubsampled contourlet transfoml: Theory, design and applications [J]. IEEE Trans Image Proc, 2006,15(10):1779-1793. 被引量:1
  • 6D L Donoho. De-Noising by Soft-Thresholding [J]. IEEE Trans Information Theory, 1995, 41 (3) : 613-627. 被引量:1
  • 7Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis and Application, 1998, 4 (3) : 245-267. 被引量:1
  • 8TANG Lei, ZHAO Feng, ZttAO Zong-gui. THE NONSUBSAMPLED CONTOURLETTRANSFORM FOR IMAGE FUSION [J ]. IEEE International Conformation on Wavelet Analysis and Pattern Recognition, 2007, 2(4):305-310. 被引量:1
  • 9林立宇,张友焱,孙涛.Contourlet[M].北京:科学出版社,2008. 被引量:1
  • 10Minb N,Martin Vetterli. The contourlet transform:an effi- cient directional muhiresolution image representation[ J ]. IEEE Transaction On Image Processing, 2005,14 (12) : 2091 - 2106. 被引量:1

引证文献4

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部