期刊文献+

无冗余关联规则在财政收支分析中的应用

Application of Non-Redundant Association Rules in Financial Revenue and Expenditure Analysis
下载PDF
导出
摘要 关联规则反映了大量数据中项目集之间的相关联系,通过关联规则的提取可以对大量的数据进行分析。运用无冗余关联规则的性质对财政收支体系中的重要参数指标进行数据处理和关联规则的挖掘,从而得到最有价值的信息,利用到决策中,具有非常重要的现实意义。 Association rules reflect the potential relationships of co llection projects between a great deal of data information. Through extracting the association rules we can analysis the large amounts of data. Carrys on the data processing and association rules mining to the important parameters of financial revenue and expenditure system using the nature of non-redundant association rules, which obtains the most information and makes use of decision-making. It is very important to practical significance.
出处 《现代计算机》 2008年第11期73-76,共4页 Modern Computer
关键词 数据挖掘 关联规则 无冗余 财政收支分析 Data Mining Association Rules Non-Redundant Financial Revenue and Expenditure Analysis
  • 相关文献

参考文献6

二级参考文献26

  • 1Brin S, Motwani R, Silverstein C. Beyond market basket: generalizing association rules to correlations [C]. In: Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, Tucson, AZ,1997, 265-276. 被引量:1
  • 2Ester M, Kriegel H-P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases withnoise[C]. In: Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining,Portland, Oregon, 1996, 226-231. 被引量:1
  • 3Srikant R, Vu Q, Agrawal R. Mining association rules with item constraints[C]. In: Proc. 1997 Int. Conf. Knowledge Discovery in Databases and Data Mining, Newport Beach, California, 1997,67-73. 被引量:1
  • 4Ng R, Lakshmanan L V S, Han Jet al. Exploratory mining and pruning optimizations of constrained associations rules[C]. In:Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data,Seattle, WA, 1998,13-24. 被引量:1
  • 5Aggrawal C, Yu P S. Online generation of association rules[C]. In: Proc. 1998 Int. Conf. Data Engineering, Orlando,FL, 1998,402-411. 被引量:1
  • 6Toivonen H, Klemettinen M, Ronkainen Pet al. Pruning and grouping discovered association rules[Z]. In MLnet Workshop on Statistics, Machine Learning, and Discovery in Databases,Crete, Greece, 1995, 47-52. 被引量:1
  • 7Liu B, Hsu W, Ma Y. Pruning and summarizing the discovered associations[C]. In: Proc. 1999 ACM-SIGKDD Int. Conf.Knowledge Discovery and Data Mining. San Diego, CA. USA,1999,125-134. 被引量:1
  • 8Li J, Shen H, Topor R. Mining the smallest association rule set for predictions[C]. In: Proc. 2001 IEEE Int. Conf. Data Mining. San Jose, California, USA, 2001,361-368. 被引量:1
  • 9Lent B, Swami A, Widom J. Clustering association rules[C].In: Proc. 1997 Int. Conf. Data Engineering, Birminghan, England, 1997,220-231. 被引量:1
  • 10Gupta G K, Strehl A, Ghosh J. Distance based clustering of association rules[C]. In: Proc. Intelligent Engineering Systems Through Artificial Neural Networks , St. Louis, Missouri:ASME Press, 1999, 759-764. 被引量:1

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部