期刊文献+

矩阵方程AX+XB+CXD+PXQ=F的松弛迭代解法 被引量:2

RELAXATION ITERATIVE METHOD FOR SOLVING MATRIX EQUATION AX+XB+CXD+PXQ=F
下载PDF
导出
摘要 从参数迭代方法出发,建立了求解大型线性矩阵方程AX+XB+CXD+PXQ=F的唯一解的松弛迭代解法.通过矩阵变换和特征值分析,给出了松弛迭代格式收敛的充要条件.同时为了使得迭代速率加快,给出了两种加速动力迭代格式.最后,通过数值示例对文中所述进行了论证,说明所得算法大大提高了收敛速度. In this paper, based on the parameter iterative method, construct the relaxation method for solving large linear matrix equation AX+XB+CXD+PXQ=F which has a unique solution. And by matrix transformation method and matrix eigenvalue analysis method, also give the sufficient and necessary conditions for the convergence of the relaxation iterative format. At the same time, in order to quickening the convergence rate, give other two dynamical iterative formats. Finally, by a numerical result, illustrate above theory, and improve the rate of convergence.
出处 《陕西科技大学学报(自然科学版)》 2008年第5期145-149,共5页 Journal of Shaanxi University of Science & Technology
关键词 矩阵方程 松弛迭代 参数迭代 matrix equation relaxation iteration parameter iterationn
  • 相关文献

参考文献9

二级参考文献31

共引文献53

同被引文献20

  • 1孙希延,施浒立,纪元法.约束最小二乘法[J].仪器仪表学报,2006,27(z1):55-57. 被引量:4
  • 2王震,蔺小林,蒋耀林.行(或列)对称矩阵的满秩分解及其算法[J].高等学校计算数学学报,2005,27(S1):287-295. 被引量:13
  • 3张凯院,蔡元虎.矩阵方程AXB+CXD=F的参数迭代解法[J].西北大学学报(自然科学版),2006,36(1):13-16. 被引量:16
  • 4王震,蔺小林.酉对称矩阵的满秩分解及其算法[J].西安科技大学学报,2006,26(3):426-430. 被引量:6
  • 5Guo C H. Convergence Rate of, an Iterative Method for a Nonlinear Matrix Equation[J]. SIAM Journal of Matrix Analysis and Application,2001,23(11) : 295-302. 被引量:1
  • 6Guo C H, Lancaster P. Algorithms for Hyperbolic Quadratic Eigenvalue Problems[J]. Journal of Math Comp, 2005, 74 (8) : 1777-1791. 被引量:1
  • 7Guo C H. Convergence Analysis of the Latouche-Rarnaswami Algorithm for Null Recurrent Quasi-Birth-Death Processes [j]. SIAM Journal of Matrix Analysis and Application, 2002,23(3):744-760. 被引量:1
  • 8Sylvester J J. On the Trinomial Unilateral Quadratic Equaion in the Matrices of the Second Order[J]. Quarterly Journal of Mathematics, 1999,20 : 305-312. 被引量:1
  • 9Higham N J, Kim H M. Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches[J]. SIAM Journal of Matrix Analysis and Application, 2001, 23 (2) 303-316. 被引量:1
  • 10Higham N J, Kim H M. Numerical Analysis of a Quadratic Matrix Equation[J]. IMA Journal of Numerical Analysis, 2000,20(4) :499-519. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部