期刊文献+

An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street 被引量:7

An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street
下载PDF
导出
摘要 旅行时间的短期的预报为聪明的交通系统的成功是必要的。在这份报纸,我们考察预报模型的短期的交通的 state-of-art 并且构画出他们每个模型的基本想法,相关工作,优点和劣势。一改进适应指数的变光滑(IAES ) 模型也被建议克服以前的适应指数的变光滑模型的缺点。然后,比较实验在状况和反常交通调节评估在牌照匹配获得的直接旅行时间数据(每分钟行数) 上预报模型的四个主要分支的性能的正常交通下面被执行。实验的结果证明每个模型似乎有它的自己的力量和软弱。IASE 的预报表演比在更突然预报地平线(预报的和二步) 的另外的模型优异, IASE 能够处理各种交通条件。 Short-term forecasting of travel time is essential for the success of intelligent transportation system. In this paper, we review the state-of-art of short-term traffic forecasting models and outline their basic ideas, related works, advantages and disadvantages of each model. An improved adaptive exponential smoothing (IAES) model is also proposed to overcome the drawbacks of the previous adaptive exponential smoothing model. Then, comparing experiments are carried out under normal traffic condition and abnormal traffic condition to evaluate the performance of four main branches of forecasting models on direct travel time data obtained by license plate matching (LPM). The results of experiments show each model seems to have its own strength and weakness. The forecasting performance of IASE is superior to other models in shorter forecasting horizon (one and two step forecasting) and the IASE is capable of dealing with all kind of traffic conditions.
出处 《自动化学报》 EI CSCD 北大核心 2008年第11期1404-1409,共6页 Acta Automatica Sinica
基金 Supported by National High Technology Research and Development Program of China (863 Program) (2007AA11Z221), International Cooperation Project of Shanghai (08210707500), and Natural Science Foundation of Shanghai.(08ZR1420600) . _
关键词 自适应指数 平滑模型 短期旅行时间预测 预测方法 信息处理技术 城市街道 设计方案 Travel time, short-term forecasting, license plate matching (LPM), exponential smoothing
  • 相关文献

参考文献2

二级参考文献27

  • 1赵洪波.基于遗传算法的进化支持向量机研究[J].绍兴文理学院学报(自然科学版),2004,24(9):25-28. 被引量:12
  • 2丁蕾,陶亮.改进的用于回归估计的支持向量机学习算法[J].计算机工程与应用,2005,41(19):44-46. 被引量:11
  • 3[1]Creighton,R.L.Urban Transportation Planning[M]Urbgna:University of Illinois Press,1970 被引量:1
  • 4[2]Wardrop,J.G.Some theoretical aspects of road traffic research[A].Proceedings of the Institution of Civil Engineers[C].2006,Part Ⅱ,1.325~378 被引量:1
  • 5[3]Beckmann,M.,McGuire,C.B.and Winsten,C.B.Studies in the Economic s of Transportation[M].Connecticut,New Haven:Yale University Press,1956 被引量:1
  • 6[4]Lowry,I.S.A Model of Metropolis[M].California:RM4035-RC,Rand Corporation,Santa Monica,1964 被引量:1
  • 7[5]Boyce,D.,Ralevic-Dekic,B.and Bar-Gera,H.Convergence of traffic assignments:How much is enough?[J].ASCE Journal of Transportation Engineering,2004,(130):49~55 被引量:1
  • 8[6]Evans,S.P.Derivation and analysis of some models for combining trip distribution and assignment[J].Transportation Research,1976,(10):37~57 被引量:1
  • 9[7]Lam,W.H.K.and Huang,H.-J.A combined trip distribution and assignment model for multiple user classes[J].Transportation Research,1992,(26B):275~287 被引量:1
  • 10[8]Lam,W.H.K.and Huang,H.-J.Calibration of the combined trip distribution and assignment model for multiple user classes[J] Transportation Research,1992,(26B):289~305 被引量:1

共引文献5

同被引文献21

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:119
  • 3ZHOUXK.Studyof new application of vehicle license recognition in ITS[D]. Nanjing : Nanjing University of Posts and Telecommunications, 2008. 被引量:1
  • 4MAX L, Haris N Koutsopoulos. A new online travel time estimation approach using distorted automatic vehicle identification data[C]// Intelligent Transportation Systems, ITSC 2008, llth International IEEE Conference on. IEEE, 2008: 204-209. 被引量:1
  • 5LIXL,SHIJJ.Studyinoddvaluesprocessmethod of travel time[J]. Journal of Wuhan University of Teehnology (Transportation Scienee & Engineering), 2012, 36(1): 116-119. 被引量:1
  • 6SUNJ,FENGY.AnewmethodofODestimation based on automatic vehicle identification data[J]. Journal of Tongji University (Natural Science), 2011, 39(12):1801-1804. 被引量:1
  • 7Stinson D R. Cryptography: Theory and practice[M]. CRC Press, 2005. 被引量:1
  • 8ZHOUSB.Researchand application on determining optimal number of clusters in cluster analysis[D]. Wuxi: Jiangnan University, 2011. 被引量:1
  • 9Calinski T, Harabasz J. A dendrite method for cluster analysis[J]. Communications in Statistics-theory and Methods, 1974, 3(1),: 1-27. 被引量:1
  • 10李德毅,肖俐平.网络时代的人工智能[J].中文信息学报,2008,22(2):3-9. 被引量:16

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部