摘要
在1991年A.D.Gunawardena等人首先提出了以I+S为预处理子的Gauss-Seidel型迭代法比基本的迭代法有较好的收敛性.文章提出以阶梯矩阵作预处理子的Gauss-Seidel型迭代法,文中给出了收敛定理并以数值例子说明文章的方法比基本的迭代法及A.D.Gunawardena等人的方法有较好的收敛率.
In 1991A. D. Gunawardena et al. reported that the convergence rate of the Gauss-Seidel method with a preconditioning matrix I+S is superior to that of the basic iterative method. We use stair matrix P as the preconditioning matrix. If a coefficient matrix A is a nonsingular L-matrix, the preconditioned method yields considerale improvement in the rate of convergence for the Gauss-Seidel type iterative method. Finally,a numerical example shows the advantage of this method.
出处
《太原师范学院学报(自然科学版)》
2008年第3期20-22,28,共4页
Journal of Taiyuan Normal University:Natural Science Edition