期刊文献+

基于眼睛状态识别的驾驶员疲劳实时监测 被引量:14

Real-time Monitoring of Driver Fatigue Based on Eye State Recognition
下载PDF
导出
摘要 提出了一种基于眼睛状态识别的驾驶员疲劳状态实时监测的方法。为了实现眼睛状态的检测,首先通过计算累计背景和当前帧的差分图像的质心确定脸部范围,然后通过二值化和轮廓检测确定眼睛的搜索区域。在利用启发式规则进行筛选定位之后,计算眼睛骨架曲线和两眼角连线之间的距离得到眼睛的睁开程度。通过计算相应的疲劳指标如PERCLOS、平均睁眼程度、最长眼睛闭合时间来推测驾驶员的疲劳状态。以驾驶员面部视频的主观评分作为评价依据对检测方法进行评价,结果显示上述3个指标在不同的疲劳等级下均存在显著性差异,通过对不同指标的融合可达到较好的疲劳检测准确率。 A scheme of real-time monitoring of driver fatigue based on eye state recognition is presented. First, the difference images obtained from the background and current images are used to identify the center of face region. Then binarization and contour detection are used to identify the region of interest of the eye. After using heuristic rules to screen out the contour, the profile of eye rim can be extracted, based on which the opening level of eye is obtained as one of the three parameters chosen to be the indicators of driver fatigue. The three indicators are percent eyelid closure ( PERCLOS), average opening level, and maximum closure duration of eye. They are e- valuated with subjective rating by groups of laboratory technicians on the video of drivers'face images. The results show that all the three above-mentioned indicators can well represent driver fatigue, and the fusion of three indicators can get even higher accuracy rate in driver fatigue detection.
机构地区 清华大学
出处 《汽车工程》 EI CSCD 北大核心 2008年第11期1001-1005,共5页 Automotive Engineering
基金 国家863计划(2006AA11Z213) 中国博士后科学基金(20070420361)资助
关键词 驾驶员 疲劳检测 眼睛状态 交通事故 交通安全 计算机 差分图像 driver fatigue detection eye state
  • 相关文献

参考文献9

  • 1Papadelis C, Chen Z, Kourtidou-Papadeli C, et al. Monitoring Sleepiness with On-board Electrophysiological Recordings for Preventing Sleep-deprived Traffic Accidents[J]. Clinical Neurophysiology ,2007,118 (9) : 1906 - 1922. 被引量:1
  • 2Roman B, Pavel S, Miroslav P, et al. Fatigue Indicators of Drowsy Drivers Based on Analysis of Physiological Signals, Medical Data Analysis [ M ]. Springer Berlin, Heidelberg,2001 : 62 - 68. 被引量:1
  • 3D'Orazio T, Leo M, Guaragnella C, et al. A Visual Approach for Driver Inattention Detection [ J ]. Pattern Recognition, 2007,40 (8) :2341 -2355. 被引量:1
  • 4Zhang X, Zhan H. An Illumination Independent Eye Detection Algorithm[ C]. 18th International Conference on Pattern Recognition ,2006,1:392 - 395. 被引量:1
  • 5Yuille A L, Hallinan P W, Cohen D S. Feature Extraction from Faces Using Deformable Templates [ J ]. International Journal of Computer Vision, 1992,2 ( 8 ) :99 - 111. 被引量:1
  • 6Wei-Gang C, Huang C L, Hwang W L. An Automatic Eye Wink Interpretation System for the Disable[ C ]. IEEE International Conference on Multimedia and Expo,2007:979 -982. 被引量:1
  • 7Fok Hing Chi T, Bouzerdoum A. A Fast Neural-based Eye Detection System[C]. Proceedings of International Symposium on Intellent Signal Processing and Communication Systems,2005:641 - 644. 被引量:1
  • 8Kumar R T, Raja S K, Ramakrishnan A G. Eye Detection Using Color Cues and Projection Functions[ C ]. 2002 International Conference on Image Processing,2002:337 -340. 被引量:1
  • 9Kaymak U, Setnes M. Fuzzy Clustering with Volume Prototypes and Adaptive Cluster Merging [ J ]. IEEE Transactions on Fuzzy Systems,2002,10 (6) :705 - 712. 被引量:1

同被引文献177

引证文献14

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部