期刊文献+

多学科设计优化中目标层解分析法的研究 被引量:3

A Study of Analytical Target Cascading in Multidisciplinary Design Optimization
下载PDF
导出
摘要 目标层解分析是一种层次化、多层系统设计优化方法。为了确保求解多学科设计优化各子问题的可行性,提高求解效率,应用增广拉格朗日惩罚函数松弛化方法,对目标层解分析的内外层嵌套式求解策略进行改进,通过对内层循环的惩罚函数松弛化来减少内层循环病态子问题的求解计算时间,当内层循环获得收敛之后,外层循环更新惩罚权重来获得可行解。并置设计次数由10到1000的具体实例来对比分析各种惩罚函数对求解效率的影响。由实验可得,应用增广拉格朗日惩罚函数松弛化方法求解,计算权重得到减小,迭代次数减少到二次惩罚函数法的2%。 Analytical target cascading is a hierarchical method used for multilevel-system design optimization. To ensure better feasibility and higher efficiency of the sub problems brought out in the process of muhidisciplinary design optimization, an augmented Lagrangian relaxation method is used. By using this method, a typical nested solution strategy of analytical target cascading has been modified. The computational time for solving the inner loop illconditioning sub problems is reduced through the relaxation of penalty function of inner loop. After the convergence of inner loop is gained, the outer loop will acquire feasible solution by updating the penalty weight. Further, an experiment with one example ranging from 10 to 1000 is designed to compare the impacts on solving efficiency which are brought out by different penalty functions. The result shows that the augmented Lagrangian relaxation method gains less penalty weight and the iteration times will be reduced to 2 percent of that of Quadratic penalty function method.
出处 《计算机仿真》 CSCD 2008年第11期195-199,共5页 Computer Simulation
基金 面向航天行业的可定制PLM系统(2007AA040601)
关键词 多学科优化 目标层解分析 增广拉格朗日松弛化 惩罚函数 Muhidisciplinary design optimization Analytical target cascading Augmented lagrangian relaxation Penalty function
  • 相关文献

参考文献8

  • 1H M KIM. Target cascading in optimal system design[ D]. University of Michigan, 2001. 被引量:1
  • 2H M KIM, et al. Analytical target cascading in automotive design [ J ]. ASME Journal of Mechanical Design, 2003, 125 (3) : 481 - 489. 被引量:1
  • 3赵刚,江平宇.面向大规模定制生产的e-陶制造单元标层解分析优化规划模型[J].机械工程学报,2007,43(2):178-185. 被引量:12
  • 4Jeremy J Miehalek. Panos Y Papalamhros. An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading[ J]. Transactions of the ASME. 2005 -3,127: 206. 被引量:1
  • 5S Tosserams L F P Etman P Y Papalambros, J E Rooda. An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers[ J]. Struct Multidisc Optim,2006,31:176 - 189. 被引量:1
  • 6JULIE B LASSITER, MARGARET M WIECEK, KARA R AN- DRIGHETTI. Lagrangian Coordination and Analytical Target Cascading: Solving ATC - Decomposed Problems with Lagrangian Duality[J]. Optimization and Engineering, 2005,6:361 - 381. 被引量:1
  • 7Jeremy J Michalek. Panos Y Papalambros. Weights, Norms, and Notation in Analytical Target Cascading[ J]. Journal of Mechanical Design. 2005, 5:127 -499. 被引量:1
  • 8Vincent Y Blouin, Julie B Lassiter, Margaret M Wiecek, Georges M Fadel. Augmented Lagrangian Coordination for Decomposed Design Problems[C]. 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro, Brazil,2005 - 3. 被引量:1

二级参考文献14

  • 1LAMPEL J,MINTZBERG H.Customizing customization[J].Sloan Management Review,1996 (Fall):21-30. 被引量:1
  • 2GILMORE J H,PINE Ⅱ B.The four faces of mass customization[J].Harvard Business Review,1997(1-2):91-101. 被引量:1
  • 3LEE J.E-manufacturing systems:fundamental and tools[J].Journal of Robotics and Computer-integrated Manufacturing,2003,9(6):501-507. 被引量:1
  • 4ZHU Bin,JIANG Pingyu.An approach to configuring product family using rough set theory[J].International Journal of Product Development.2005,2(1/2):155-169. 被引量:1
  • 5KIM H M.Target cascading in optimal system design[D].Michigan:University of Michigan,2001. 被引量:1
  • 6KIM H M,RIDEOUT D G,PAPALAMBROS P Y,et al.Analytical target cascading in automotive design[J].ASME Journal of Mechanical Design,2003,125(3):481-489. 被引量:1
  • 7CRAMER E,DENNIS J,FRANK P,et al.Problem formulation for multidisciplinary optimization[J].SIAM Journal of Optimization,1994,4(4):754-776. 被引量:1
  • 8SOBIESZCZANSKI-SOBIESKI J,JAMES B B,et al.Structural optimization by multilevel decomposition[J].AIAA Journal,1985,21(11):1 775-1 782. 被引量:1
  • 9BRAUN R,Collaborative optimization:an architecture for large-scale distributed design[D].San Francisco,Stanford University,1996. 被引量:1
  • 10MICHELENA N,PARK H,PAPALAMBROS P Y,Convergence properties of analytical target cascading[J].AIAA Journal,2003,41(5):897-905. 被引量:1

共引文献11

同被引文献17

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部