期刊文献+

关联规则的发展 被引量:1

On the Development of Association Rules
下载PDF
导出
摘要 关联规则是数据挖掘中一种简单但很实用的规则,文章简要介绍了关联规则的概念及其分类,以及当前关联规则的挖掘算法研究情况,重点介绍了经典的基于Apriori类的候选生成方法和基于FP-tree的方法,并针对当前改进的挖掘算法进行简要说明,最后提出关联规则将来的发展方向。 An Association rule is one kind of easy but very practical rules in data mining algorithm. In the paper, simply introduces the conception and classification of association rules, and the research situation at present, mainly introduces the classical method based on Apriori and the method based on FP- tree, and simply explains the improved mining algorithm at present, at last provides the development direction of association in the future.
作者 郑斌
出处 《吉林农业科技学院学报》 2008年第3期43-45,70,共4页 Journal of Jilin Agricultural Science and Technology University
关键词 关联规则 挖掘算法 发展 association rules mining algorithm development
  • 相关文献

参考文献8

二级参考文献72

  • 1R Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc of 1994 Int'l Conf on Very Large Data Bases.Santiago, Chili: VLDB Endowment, 1994. 487--499. 被引量:1
  • 2J S Park, M S Chen, P S Yu. An effective Hash-based algorithm for mining association rules. In: Proc of 1995 ACM-SIGMOD Int'l Cord on Management of Data. San Jose, CA: ACM Press,1995. 175--186. 被引量:1
  • 3S Brin, R Motwani, C Silvemtein. Beyond market basket:Generalizing association rules to correlations. In: Proe of 1997 ACM-SIGMOD Int'l Conf on Management of Data. Tucson, AZ:ACM Press, 1997. 265--276. 被引量:1
  • 4R Agrawal, R Srikant. Mining sequential patterns. In: ICDE'95. Taipei, Taiwan: IEEE Computer Society Press, 1995. 3--14. 被引量:1
  • 5G Dong, J Li. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. San Diego, CA:ACM Press, 1999. 43~52. 被引量:1
  • 6J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation. In: Proe of 2000 ACM-SIGMOD Int'l Conf on Management of Data. Dallas, TX: ACM Press, 2000. 1--12. 被引量:1
  • 7Artur Bykowski, Christophe Rigotti. A eondemsed representation to find frequent patterns. In: Proe of the 20th ACM SIGACT-SIGMOD-SIGART Symp on Principles of Database Systems(PODS 2001). Santa Barbara, CA: ACM Press, 2001. 267~273. 被引量:1
  • 8Hah J, Pei J, Yin Y. Mining partial periodicity using frequent pattern trees: [CS Tech. Rep. 99-10]. Simon Fraser University, July 1999 被引量:1
  • 9Savasere A,Omiecinski E,Navathe S. An efficient algorithm for mining association rules in large database. In VLDB'1995. 432~ 443 被引量:1
  • 10Srikant R,Vu Q,Agrawal R. Mining association rules with item constraints. In KDD'1997. 594~605 被引量:1

共引文献198

同被引文献14

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部