期刊文献+

基于模糊偏序关系评估决策的智能信息融合

Intelligent information fusion based on evaluation and decision of fuzzy preference relations
下载PDF
导出
摘要 针对信息融合系统应综合考虑获取信息所要求的资源、计算复杂度和时间所需要的最小成本的问题,提出了基于模糊偏序关系评估决策的智能信息融合系统,利用模糊偏序关系的排序方法,来对传感器进行评估决策和智能选择,并与证据理论相组合,应用于目标识别,仿真结果表明了该方法的有效性。 To resolve the problem of information fusion systems minimizing the associated eoats in terms of computational complexity, time and required resources in aequiring the information. The intelligent information fusion system based on evaluation and deeision of fuzzy preference relations model is proposed, which uses the ordering method of fuzzy preference relations to evaluation and decision and select sensors, then combines it with evidence theory to target recognition, the simulation result indicates that this algorithm is effectiveness.
出处 《传感器与微系统》 CSCD 北大核心 2008年第11期18-20,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(60774023)
关键词 模糊偏序关系 多传感器信息融合 证据理论 目标识别 fuzzy preference relations multi-sensor information fusion evidence theory target recognition
  • 相关文献

参考文献6

  • 1Roemer M J, Kacprzynski G J. Assessment of data and knowledge fusion strategies for prognostics and health management [ C ]//Proceedings of the IEEE Conference on Aerospace,2001:2979 - 2988. 被引量:1
  • 2张方修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005. 被引量:1
  • 3Zhang Yongmian, Ji Qiang , Looney C G. Active information fusion for decision making under uncertainty [ C ]//Processings of the 5th IEEE International Conferenece on Information Fusion, 2002: 643 -650. 被引量:1
  • 4刘同明 夏祖勋 解洪成.数据融合技术及其应用[M].北京:国防工业出版社,2000.. 被引量:44
  • 5李鸿征,邱红卫.基于多传感信息融合的车辆主动防碰撞控制系统[J].传感器世界,2003,9(9):28-31. 被引量:4
  • 6Sylvie Roussel. Fusion of aroma FT-IR and UV sensor data based on the Bayesian inference application to the discrimination of white grape varieties[ J ]. Chemometrics and Intelligent Laboratory Systems ,2003 ( 65 ) :209 -219. 被引量:1

二级参考文献5

  • 1M Breakstone, M McDonald, Car-following: a historical review[J], Transportation Research Part F2, 1999, PP.181-196. 被引量:1
  • 2Kay C Check, G E Mid, Multi-Sensor based Collision Warning System[C]. Proc. Of the 32^nd ISATA, Vienna, Austria, 14-18 June 1999. 被引量:1
  • 3C Stiller, J Hippo, Multi-sensor obstacle detection and tracking[J]. Image and Vision Computing, 2000, pp.389-396. 被引量:1
  • 4Ito T Yamada K, Preceding Vehicle and Road Lanes Recognition Methods for RCAS Using Visual System[C]. Intelligent Vehicles '94, 1994, Paris, pp.85-90. 被引量:1
  • 5H Araki, K Yamada, Development of Rear-end Collision Avoidance System[J]. Conference Proceeding of IEEE Intelligent Transportation Systems, October, 2000. 被引量:1

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部