期刊文献+

基于自组织特征映射神经网络的零件加工尺寸类型识别 被引量:2

Machining dimension type recognition based on self-organizing feature map neural network
下载PDF
导出
摘要 提出一种基于自组织特征映射神经网络(SOFM)的零件加工尺寸类型识别方法.首先从三维CAD软件中获取包含零件特征数据的XML文件,并从文件中提取相应的加工特征及尺寸.然后以零件加工特征作为SOFM的输入层的神经元,经处理后作为SOFM的输入向量,利用SOFM自学习和自组织能力对输入向量进行训练.训练好的网络可以实现对零件加工尺寸类型进行较好的识别.最后通过对某零件的尺寸类型识别,验证了所提方法对平面、内孔、外圆和定位四类典型加工尺寸类型识别的有效性. An automatic machining dimension type recognition method based on self-organizing feature map (SOFM) neural network was presented. Firstly, the extensible markup language (XML) file including data of component features was acquired from 3D CAD software, and the machining features and dimensions were extracted from the XML files. The machining features of component were treated as neurons in the input layer of SOFM network, which would be considered as input vectors of SODM after processing. By employing the self-studying and self-organizing capability of SOFM, the input vectors were trained and the trained network could implement well recognition of machining dimension type. Finally, though recognition of dimension type of some component, the validity of the proposed method for four typical machining dimension types, namely plane, inner hole, outer circle and orientation, were demonstrated.
出处 《工程设计学报》 CSCD 北大核心 2008年第5期341-346,共6页 Chinese Journal of Engineering Design
基金 2005年度教育部科学技术研究重点项目(205122) 广西自然科学基金资助项目(桂科自0640166)
关键词 自组织特征映射 加工尺寸类型 可扩展标记语言 self-organizing feature map machining dimension type extensihle markup language
  • 相关文献

参考文献8

  • 1MAREFAT M, KASHYAP P L. Geometric reasoning for recognition of three-dimensional objects feature[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(10):949-965. 被引量:1
  • 2VANDENBRANDE J H, REQUICHA A A G. Spatial reasoning for the automatic recognition of machinable features in solid models[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(12): 1-17. 被引量:1
  • 3刘云华,陈立平,钟毅芳,张卫国.基于痕迹的特征模型解释技术研究[J].计算机学报,2000,23(9):960-965. 被引量:4
  • 4季益平..基于加工特征的装夹规划和层次式工序规划研究[D].浙江大学,2006:
  • 5罗月童,刘晓平.三维特征识别技术及其在MCAM中的应用[J].工程图学学报,2006,27(1):50-54. 被引量:3
  • 6陈永府,黄正东,赵建军,龚雄.混合式特征识别技术[J].机械设计,2007,24(6):42-45. 被引量:5
  • 7夏翔..基于特征的轴类零件CAPP系统的研究与探索[D].中南林业科技大学,2005:
  • 8LIWD, ONGSK, NEE A Y C. A hybrid method for recognizing interacting machining features[J]. International Journal of Production Research, 2003, 41 (9): 1887-1908. 被引量:1

二级参考文献25

  • 1[1]Tseng Yuan-Jye, Joshi S B. Recognizing multiple interpretations of interacting machining features. Computer Aided Design, 1994, 26(9):667-688 被引量:1
  • 2[2]Lee Jae Yeol, Kim Kwangsoo. A feature-based approach to extracting machining features. Computer Aided Design, 1998, 30(13): 1019-1035 被引量:1
  • 3[3]Lee Jae Yeol, Kim Kwangsoo. Generating alternative interpretations of machining features. The International Journal of Advanced Manufacturing Technology, 1998, 15: 38-48 被引量:1
  • 4[4]Regli W C, Gupta S K, Nau D S. Extracting alternative machining features: an algorithmic approach. Technical Research Report TR 94-55 被引量:1
  • 5[5]Sakurai H. Volume decomposition and feature recognition, Part I: polyhedral objects. Computer Aided Design, 1995, 27 (11) :833-843 被引量:1
  • 6[6]Sakurai H. Volume decomposition and feature recognition, Part Ⅰ: curved objects. Computer Aided Design, 1996, 28(6/7):519-537 被引量:1
  • 7Liu X P, Luo Y T, et al. Development & application of MCNP auto-modeling tool: MCAM 2.0 [A]. In: 7th China/Japan Symposium on Materials for Advanced Energy Systems and Fission and Fusion Engineering[C]. 2002. 265-270. 被引量:1
  • 8Suzanne F Buchelea, Richard H Crawfordb.Three-dimensional half-space constructive solid geometry tree construction from implicit boundary representations [J]. Computer Aided Design, 2004,36(11): 1063-1073. 被引量:1
  • 9Joshi S, Chang T C. Graph-based heuristics for recognition of machined features from 3-d solid model[J]. Computer-Aided Design, 1988, 20(2): 58-66. 被引量:1
  • 10Vandenbrande J H, Requicha A A G. Spatial reasoning for the automatic recognition of machinable features in solid models [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(12): 1269-1285. 被引量:1

共引文献9

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部