期刊文献+

非Lipschitz条件下的倒向重随机微分方程 被引量:2

Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients
下载PDF
导出
摘要 该文研究了非Lipschitz条件下的倒向重随机微分方程,给出了此类方程解的存在唯一性定理,推广Pardoux和Peng 1994年的结论;同时也得到了此类方程在非Lipschitz条件下的比较定理,推广了Shi,Gu和Liu 2005年的结果.从而推广倒向重随机微分方程在随机控制和随机偏微分方程在粘性解方面的应用. A class of backward doubly stochastic differential equations (BDSDEs) are studied. The existence and uniqueness of solution to BDSDEs with non-Lipschitz coefficients is obtained, and a comparison theorem to this kind of backward stochastic differential equations is showed.
作者 朱波 韩宝燕
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第5期977-984,共8页 Acta Mathematica Scientia
基金 校基金资助
关键词 It积分 非LIPSCHITZ条件 倒向重随机微分方程 解的存在唯一性定理 比较定理 Stochastic calculus Backward doubly stochastic differential equation Comparisontheorem Picardtype iteration
  • 相关文献

参考文献2

二级参考文献6

共引文献29

同被引文献17

  • 1Hamadene S. Multidimensional backward stochastic differential equations with uniformly continuous coeffcients [J]. BemouUi, 2003, 9(3): 517-534. 被引量:1
  • 2Pardoux E, PENG S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990, 14:55-6l. 被引量:1
  • 3Lepeltier J P, San Martin J. Backward stochastic differential equations with continuous coefficient[J]. Statistics and Probability Letters, 1997, 32:425-430. 被引量:1
  • 4MAO X. Adapted solution of backward stochastic differential equations with non-Lipschitz coefficients[J]. Stochastic Processes and their Applications, 1995, 58:281-292. 被引量:1
  • 5EI Karoui N, PENG S, Quenez M C. Backward stochastic differential equation in finance[J], Mathematical Finance, 1997,7:1-72. 被引量:1
  • 6FAN S, JIANG L, TIAN D. One-dimensional BSDEs with finite and infinite time horizons[J]. Stochastic Processes and their Applications, 2011, 121:427-440. 被引量:1
  • 7JIA G. A class of backward stochastic differential equations with discontinuous coefficients[J]. Statistics and Probability Letters, 2008, 78:231-237. 被引量:1
  • 8Pardoux E, PENG S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs[J]. Probability Theory and Related Fields, 1994, 98(2):209-227. 被引量:1
  • 9SHI Y, GU Y, LIU K. Comparison theorem of backward doubly stochastic differential equations and applications[J]. Stochastic Analysis and Application, 2005, 23(1):1-14. 被引量:1
  • 10LIN Q. Backward doubly stochastic differential equations with weak assumptions on the coefficients[J]. Applied Mathematics and Computation, 2011, 217:9322-9333. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部