摘要
最大频繁项集的挖掘在关联规则挖掘中起着非常重要的作用,将其抽象为带约束条件的子集问题,利用蚁群算法进行求解。实验结果表明,与传统的Apriori算法相比,在最小支持度较小的情况下,蚁群算法具有较快的挖掘速度,在大部分情况下能够获得所有的最大频繁项集,实验表明了蚁群算法在求解最大频繁项集挖掘问题上的有效性。
Mining maximum frequent itemsets is very important in mining association rules, ant colony system algorithm (ACS) is proposed to solve this problem as a constrained subset problem. Compared with Apriori algorithm, the simulation results of ACS show that it is more efficient in the lower minimum support condition, and it obtains all the maximum frequent itemsets in most instances. The results also testify its efficiency in mining maximum frequent itemsets.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第20期5290-5292,共3页
Computer Engineering and Design
关键词
关联规则
最大频繁项集
蚁群算法
正反馈机制
启发式信息
association rule
maximum frequent itemsets
ant colony system
plus-feedback
heuristic information