期刊文献+

同构于三阶及四阶Hessain的两个变元的C~∞函数芽

C~∞ FUNCTION GERMS OF TWO VARIABLES OF ISOMORPHIC TO ITS CUBIC HESSAIN OR HESSAIN OF DEGREE 4
下载PDF
导出
摘要 设En是在0∈Rn的C∞函数芽环,M是En中唯一的极大理想.如果f∈M2且其二阶Hessain是非退化的,则f同构于它的二阶Hessain是非退化的,则f同构于它的二阶Hessain,这就是著名的Morse引理.本文将讨论两个变元的C∞函数芽,得到:(1)若f∈M3Exy,且其三阶Hessain是非退化的,则f同构于它的三阶Hessain.(2)若f∈MEXy,其四阶Hessain是非退化的,则f同构于它的四阶Hessain.显然,这是Morse引理的一种推广. Assame that En is the ring of the C ∞ functions germs at 0 ∈Rn, M is the unique maximal ideal in En. If f∈M2 and its quadratic Hessain is non-degenerate, then f is isomorphic to its quadratic Hessain. This is famous Morse lamma. In this paper, We will discuss C ∞function germs in two variables. The results show that f (1) If f∈M3 Exy and its cubic Hessain is non-degenerate, then f is isomorphic to its cubic Hessain. (2) If f∈W4 Exy and Its Hessain of degree 4 is non-degenerate, then f is isomorphic to its Hessain of degree 4. Obviously, this is a generalization of Morse lemma.
作者 岑燕斌
出处 《贵州科学》 1997年第4期272-275,共4页 Guizhou Science
关键词 C^∞函数芽 同构 Hessain Morse引理 C~∞ function germ Isomorphism Cubic Hessain Hessain of degree 4
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部