摘要
设En是在0∈Rn的C∞函数芽环,M是En中唯一的极大理想.如果f∈M2且其二阶Hessain是非退化的,则f同构于它的二阶Hessain是非退化的,则f同构于它的二阶Hessain,这就是著名的Morse引理.本文将讨论两个变元的C∞函数芽,得到:(1)若f∈M3Exy,且其三阶Hessain是非退化的,则f同构于它的三阶Hessain.(2)若f∈MEXy,其四阶Hessain是非退化的,则f同构于它的四阶Hessain.显然,这是Morse引理的一种推广.
Assame that En is the ring of the C ∞ functions germs at 0 ∈Rn, M is the unique maximal ideal in En. If f∈M2 and its quadratic Hessain is non-degenerate, then f is isomorphic to its quadratic Hessain. This is famous Morse lamma. In this paper, We will discuss C ∞function germs in two variables. The results show that f (1) If f∈M3 Exy and its cubic Hessain is non-degenerate, then f is isomorphic to its cubic Hessain. (2) If f∈W4 Exy and Its Hessain of degree 4 is non-degenerate, then f is isomorphic to its Hessain of degree 4. Obviously, this is a generalization of Morse lemma.
出处
《贵州科学》
1997年第4期272-275,共4页
Guizhou Science