摘要
在o∈Rn的C∞函数芽环En中,存在一类称为平坦的芽,表示为m(n)∞:一个芽f称为平坦的,如果f(o)以及其各阶偏导数在原点都是零.本文系统讨论了m(n)∞的代数性质,作为应用给出了这类芽的一些有用的分析性质.
In the ring En of C∞ function germs at o∈Rn, there is a class of germs which are called flat and denoted by m(n)∞: A germ f is called flat if f(o) and all of its partial derivatives are zero at the origin. In this paper, based on systematic discussing for some algebraic properties of m(n)∞, as an application, we shall lead to some usefull analytic properties of this class germs.
出处
《数学进展》
CSCD
北大核心
1999年第6期511-518,共8页
Advances in Mathematics(China)
基金
国家自然科学基金
&&贵州省教委基金