期刊文献+

Stokes耦合系统解的存在性与正则性 被引量:1

Existence and regularity of the solution to the Stokes coupling system
下载PDF
导出
摘要 运用紧性方法证明了Stokes耦合系统解的存在性,用能量方法建立了解的正则性. The existence of the solution to the Stokes coupled system was proved by the compact method and the regularity of the solution to the Stokes coupled system was established by the energy method.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期103-107,共5页 Journal of Lanzhou University(Natural Sciences)
基金 河南省自然科学基金(0511012700) 驻马店市基础研究项目(078001) 河南省教育厅自然科学基金(2008C110002)资助.
关键词 耦合系统 紧性方法 能量方法 coupled system compact method energy method
  • 相关文献

参考文献9

  • 1TRITTON D J. Plysical fluid dynamics[M]. 2nd ed. : Clarendon: Oxford University Press, 1988. 被引量:1
  • 2GETLING A V. Rayleigh-Benard convection structures and dynamics[M]. New Jersey: World Scientific, 1998. 被引量:1
  • 3何丽红,郑晓静.风-沙-电多场耦合模型及其对风沙流结构的影响[J].兰州大学学报(自然科学版),2005,41(3):87-92. 被引量:8
  • 4拉德仁斯卡娅 O A.粘性不可压缩流体动力学的数学问题[M].张开明译.上海:上海科学技术出版社,1983. 被引量:1
  • 5BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Benard convection[J]. Annual Review of Fluid Mechanics, 2000, 32: 709-778. 被引量:1
  • 6BUSSE F H. Fundamentals of thermal convection, in mantle convection: plate tectonics and global dynamics[J]. The Fluid Mechanics of Astrophysics and Geophysics, 1989, 4: 23-95. 被引量:1
  • 7WANG Xiao-ming. Infinite Prandtl number limit of Rayleigh-Benard convection[J]. Communications on Pure and Applied Mathematics, 2004, 57(10): 1 265-1 282. 被引量:1
  • 8SHI Jian-guo, WANG Ke, WANG Shu. The initial layer problem and infinite Prandtl number limit of Rayleigh-Benard convection[J]. Communications in Mathematical Sciences, 2007, 5(1): 53-66. 被引量:1
  • 9SIMON J. Compact sets in the space LP(O, T; B)[J]. Anal Math Pura Appl, 1987, 146(4): 65-96. 被引量:1

二级参考文献13

  • 1Gill E W B. Frictional electrification of sand[J]. Nature, 1948, 162: 568-569. 被引量:1
  • 2Schmidt D S, Schmidt R A, Dent J D. Electrostatic force on saltating sand[J]. J Geophys Res, 1998,103: 8997-9001. 被引量:1
  • 3Greeley R, Iversen J D. Wind as a Geological Process on Earth, Mars, Venus and Titan[M]. New York: Cambridge University Press, 1985. 被引量:1
  • 4Zheng X J, Huang N, Zhou Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. J Geophys Res, 2003, 108: 4322. 被引量:1
  • 5Owen P R. Saltation of uniform grains in air[J]. J Fluid Mech, 1964, 20: 225-242. 被引量:1
  • 6Ungar J E, Haff P K. Steady state saltation in air[J].Sedimentology, 1987, 34: 289-299. 被引量:1
  • 7Zheng X J, He L H, Zhou Y H. Theoretical model of the electric field produced by charged particles in windblown sand flux[J]. J Geophys Res, 2004,109(D15208): 1-9. 被引量:1
  • 8Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. New York: William Morrow,1941. 被引量:1
  • 9Anderson R S, Hallet B. Sediment transport by wind: toward a general model[J]. Geol Soc Am Bull,1986, 97: 523-535. 被引量:1
  • 10Frankle D R. Electromagnetic Theory[M]. New Jersey: Prentice-Hall, 1986. 被引量:1

共引文献7

同被引文献7

  • 1Tritton D J. Physical Fluid Dynamics. 2nd ed[M]. Oxford science publications. Clarendon: Oxford university press, 1988. 被引量:1
  • 2Getling A V. Rayleigh-Benard convection: structures and dynamics. Advanced series in Non-linear Dynamics, 11[M]. River Edge N J, World scientific, publishing co, Inc, 1998. 被引量:1
  • 3Bodenschatz E, pesch W, Ahlers G. Recent developments in Rayleigh-Benard convection[J]. Annual review of fluid mechanics, 2000, 32: 709-778. 被引量:1
  • 4Busse F H. Fundamentals of thermal convection. Mantle convection: plate tectonics and fluid dynamics[J]. The Fluid Mechanics of Astrophysics and Geophysics, 1989, 4: 23-95. 被引量:1
  • 5Xiaoming Wang. A note on long Time Behavior of Solutions to the Boussinesq system at Large Prandtl Number[J]. Contemporary Mathematics, 2005, 371: 315-323. 被引量:1
  • 6Xiao Ming, Wang. Infinite prandtl Number Limit of Rayleigh-Benard convection[J], communications on pure and Applied Mathematics, 2004, 57(10): 1265-1282. 被引量:1
  • 7Jianguo Shi, Ke wang, Shu Wang. The Initial Layer problem and Infinite prandtl number limit of Rayleigh-Benard convection[J]. Communications in Mathematical Sciences, 2007, 5(1): 53-66. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部