摘要
基于无网格方法和精细积分方法,提出一种用于欧拉-伯努利梁动力响应求解的新算法。研究该算法的计算原理、实现方法,并给出数个典型的数值算例.该方法利用无网格方法进行空间自由度的离散,采用精细积分方法对时域积分,采用修正变分原理满足边界条件、最小二乘法进行插值,龙贝格算法进行数值积分.数值计算结果表明,此方法计算量较小,精度高,稳定性好.
Based on the element-free Galerkin method and refinement integration method, a new algorithm was proposed for finding the solution of dynamic response of Euler-Bernoulli beam. The calculation principle and its implementation method were investigated and a few typical numerical solutions were also given. The element-free Galerkin method was used for discretization of degree of freedom in space, the refinement integration method for time-domain integration, the modified variation principle to meet boundary condi- tions, the least-squares method for interpolating, and the Romberg algorithm for numerical integration. The numerical results showed that this method exhibited smaller computation labor, high accuracy, and good stability.
出处
《兰州理工大学学报》
CAS
北大核心
2008年第5期144-146,共3页
Journal of Lanzhou University of Technology
基金
国家自然科学基金(10672068)
山东省自然科学基金(2003zx02)
博士生创新基金(1291190017)
博士点基金(2006299001)
关键词
结构动力学
无网格伽辽金法
精细时程积分
龙贝格算法
structural dynamics
element-free Galerkin method
refinement time history integration
Romberg algorithm