摘要
针对车辆悬架系统中状态和输入存在时滞的最优控制问题,结合科茨求积分和线性插值的精细积分法,将系统的状态方程引入到Hamilton体系下进行研究。依据最优滤波问题和带有时滞的观测器的双重准则,将时滞问题转换成非时滞问题,从而在全状态下对其方程进行精细积分求解。对带有时滞的1/4车辆悬架模型进行数值仿真,并与经典的数值算法进行比较分析。仿真结果表明,该方法具有很高的计算精确度和稳定性,并为车辆悬架系统的动力学分析提供了新的方法和手段。
As delays exist in the state and control input of optimal control of vehicle suspension systems, the state equation is discussed respectively in Hamilton system, combing with the precision integral method (PIM) of coats integral and linear interpolation. On the basis of duality principle, which is applied to the optimal filter for linear systems with time delay in observations, the original delay problem is reduced into a non-delay problem and it' s equation solved by PIM under the whole state. The quarter-car model with time delay suspension is simulated and is compared with the traditional method. The results show that the proposed method has higher precision and stability and offers method for analysis of vehicle suspension systems.
出处
《计算机工程与设计》
CSCD
北大核心
2009年第19期4516-4519,4574,共5页
Computer Engineering and Design
基金
国家自然科学基金项目(60774059)
河南省科技攻关基金项目(0496061101)
关键词
悬架系统
最优控制
双重准则
时滞
精细积分
suspension systems
optimal control
duality principle
time-delay
PIM