期刊文献+

一种动态惯性权重的粒子群优化算法 被引量:3

A Dynamic Inertia Weight Particle Swarm Optimizer Algorithm
下载PDF
导出
摘要 自粒子群优化算法被提出以来,由于其收敛速度快、易实现,得到了快速发展和广泛应用。在此提出了一种改进型的粒子群优化算法,主要特点是随进化代数的增加而动态非线性减小惯性权重,以此改善演化后期收敛速度迅速降低的问题。为了评价其性能,选取了5个基准函数进行测试,并与惯性权重线性递减的粒子群优化算法作了比较。数字仿真表明,改进算法能极大地提高搜索性能。 Particle swarm optimization(PSO) algorithm has been developing rapidly and has been applied widely since it was proposed ,as it has rapid convergence velocity and can be easily realized. In this paper, an improved particle swarm optimization algorithm is introduced. In order to improve convergence velocity to avoid decreasing rapidly in the later period evolution ,the algorithm uses the dynamic inertia weight that non-linear decrease with iterative generation increasing. To study the performance of the algorithm, it is tested with a set'of 5 benchmark functions and compared with the linear decrease weight particle swarm optimization algorithm. Numerical simulation results show that the improved algorithm can improve the search performance on the benchmark functions remarkably.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期161-164,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 广西自然科学基金资助项目(0640067)
关键词 惯性权重 粒子群优化算法 基准函数 inertia weight particle swarm optimization algorithm benchmark function
  • 相关文献

参考文献7

  • 1KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks. Washington DC:IEEE Press, 1995 : 1942-1948. 被引量:1
  • 2瞿高峰,陈淑燕.粒子群优化算法在交通信号配时中的应用[J].广西师范大学学报(自然科学版),2006,24(4):255-258. 被引量:9
  • 3JIANG Yan,HU Tie-song,HUANG Chong-chao,et al. An improved particle swarm optimization algorithm [J]. Applied Mathematics and Computation, 2007,193 (1) .. 231-239. 被引量:1
  • 4YANG Xue-ming,YUAN Jin-sha,YUAN Jiang-ye,et al. A modified particle swarm optimizer with dynamic adaptation[J]. Applied Mathematics and Computation,2007,189(2):1205-1213. 被引量:1
  • 5XU Yuan-qing,CHEN Xiang-guang,WANG Li. Original multi-objective optimization algorithm[J]. Journal of Guangxi Normal Uniersity :Natural Science Edition, 2006,24 (4) : 131-134. 被引量:1
  • 6武志峰,杨蓓.一种改进的粒子群优化算法[J].郑州大学学报(理学版),2007,39(3):109-112. 被引量:7
  • 7曹建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004. 被引量:1

二级参考文献20

  • 1杨轻云,孙吉贵,张居阳,王纯杰.稀疏二元约束满足问题的环割集粒子群算法(英文)[J].广西师范大学学报(自然科学版),2006,24(4):135-138. 被引量:1
  • 2瞿高峰,陈淑燕.粒子群优化算法在交通信号配时中的应用[J].广西师范大学学报(自然科学版),2006,24(4):255-258. 被引量:9
  • 3[1]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.Perth,Australia:IEEE,1995:1942-1948. 被引量:1
  • 4[2]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science,1995:39-43. 被引量:1
  • 5[4]Shi Y H,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]// The IEEE Congress on Evolutionary Computation.San Francisco,USA,2001:101-106. 被引量:1
  • 6[5]Lovbjerg M,Rasmussen T K,Krink T.Hybrid partic le swarm optimizer with breeding and subpopulations[C]//Proceedings of the 3rd Genetic and Evolutionary Computation Conference.San Francisco:Morgan Kaufmann Publishers Inc,2001:469-476. 被引量:1
  • 7[6]Carlisle A,Dozier G.Adapting particle swarm optimization to dynamic environments[C]//Arabnia H R,eds.Proc of Int'l Conf on Artificial Intelligence.Las Vegas:CSREA Press,2000:429-434. 被引量:1
  • 8[7]Angeline P J.Evolutionary computation versus particle swarm optimization:philosophy and performance difference[C]//The Seventh Annual Conference on Evolutionary Programming.San Diego,1998:601-610. 被引量:1
  • 9[8]Jacques R,Vesterstr J S.A diversity-guided particle swarm optimizer--the ARPSO[R]//Technical Report No.2002-02.Aarhus:Department of Computer Science,University of Aarhus,2002. 被引量:1
  • 10EBERHART R C,SHI Y.Particle swarm optimization:developments,applications and resources[C]//Proceedings of 2001 Congress Evolutionary Computation.Piscataway,NJ:IEEE Press,2001:81-86. 被引量:1

共引文献13

同被引文献29

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [ C ]// Proceedings of IEEE International Conference on nem'al networks. Perth ,Australia, 1995 : 1942-1948. 被引量:1
  • 2Fukuyama Y. Fundamentals of particle swarm techniques [ C]//Modem Heuristic Optimization Techniques with Applications to Power Systems. IEEE Power Engineering Society ,2002:45-51. 被引量:1
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[ C]//Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, N J ,2001 : 101-106. 被引量:1
  • 4Clerc M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[ C ]//Proceedings of International Conference on Evolutionary Computation. Washington, USA, 1999 : 1951-1957. 被引量:1
  • 5Bell W H,Cameron D G,Capozza L,et al. Optorsim:A grid simulator for studying dynamic data replication strategies [ J ]. International Journal of High Performance Computing Applications,2003,17 ( 4 ) :403-416. 被引量:1
  • 6Kennedy J, Eberhart R C. A discrete binary version of the particle swarm optimization algorithm[ C]//Proceedings of International Conference on System, Man, and Cybernetics. Orlando, FL, USA, 1997:4104-4109. 被引量:1
  • 7Yoshida H, Fukuama Y, Takayama S. A particle swarm optimization for reactive power and voltage control in electric power systems considering voltage security assessment[ J]. IEEE Trans. on Power System ,2001,15 (4) : 1232-1239. 被引量:1
  • 8Clerc M. Discrete particle swarm optimization illustrated by the traveling salesman problem [ C ]//Proceedings of International Conference on Evolutionary Computation. Heidelberg, Germany ,2000 : 853-859. 被引量:1
  • 9Krink T, Vesterstrom J S, Riget J. Particle swarm optimization with spatial particle extension[ C ]//Proceedings of International Conference on Evolutionary Computation. Honolulu, USA ,2002 : 1474-1497. 被引量:1
  • 10Al-kazemi B, Mohan C K. Mufti-phase generalization of the particle swarm optimization algorithm [ C ]//Proceedings of IEEE Conference on Evolutionary Computation. Honolulu, USA ,2002:489-494. 被引量:1

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部