期刊文献+

基于卷积型小波包能量矩的机械故障特征提取 被引量:3

Mechanical Fault Feature Extraction Based on Convolution Type of Wavelet Packet Energy Moment
下载PDF
导出
摘要 故障特征参数的准确提取是故障诊断的一个关键性问题。提出了一种基于卷积型小波包能量矩的特征提取方法。相比传统的小波包能量特征提取方法,基于卷积型小波包能量矩的特征提取方法能更有效地提取信号在各频带上的能量分布特征。仿真和实验验证了利用小波包能量矩进行故障诊断是一个有效的方法。 Extracting fault feature is a key of the fault diagnosis. An improved feature extraction method based on wavelet packet energy moment is presented. Compared with feature extraction method based on wavelet packet energy (WPE), the new method can better extract energy distribution feature in frequency bands. Simulation results and experiments show that it is an effective method for the fault diagnosis.
作者 高慧
出处 《煤矿机械》 北大核心 2008年第11期198-200,共3页 Coal Mine Machinery
关键词 卷积型小波包变换 小波包能量矩 特征提取 wavelet packet transformation convolution type wavelet packet energy reorient feature extraction
  • 相关文献

参考文献7

二级参考文献19

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 2秦前清 杨宗凯.实用小波分析(第一版)[M].西安电子科技大出版科,1995.. 被引量:2
  • 3申' Chr(124) '.[D].武汉:华中理工大学,1999. 被引量:1
  • 4孙即祥,王晓华,钟山.模式识别中的特征提取与计算机视觉不变量. 北京:国防工业出版社,2001. 被引量:1
  • 5程正兴.小波分析算法与应用. 西安:西安交通大学出版社,1998. 被引量:1
  • 6张贤达,保铮.非平稳信号的分析与处理.北京:国防工业出版社,1998. 被引量:1
  • 7科恩 L 著. 时-频分析:理论与应用.白居宪译.西安:西安交通大学出版社,1998. 被引量:1
  • 8赵松年 熊小芸.子波分析与子波变换[M].北京:电子工业出版社,1996.28-30. 被引量:5
  • 9Daubechies I. Ten lectures on wavelets[M]. Philadelphia : SIAM, 1992. 被引量:1
  • 10Mallat S. A wavelet tour of signal processing[M], seconded. San Diego :Academic Press, 1999. 被引量:1

共引文献126

同被引文献32

  • 1杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:143
  • 2邓秀华,朱伟兴.基于正交小波系数的阈值降噪法[J].农业网络信息,2007(7):122-123. 被引量:2
  • 3钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131. 被引量:62
  • 4Chen Y D, Du R. Fault features of large rotating machinery and diagnosis sesor fusion[J]. Journal of amfl atlVibrafioa, 1995, 188(2): 227-242. 被引量:1
  • 5HUANG Zhong-hua, XIE Ya. Fault diagnosis method ofrolling bearing based on bp neural network[C]. 2009 International Conference on Measuring Technology and Mechatronics Automation, 2009, 647-649. 被引量:1
  • 6Bin G F, Gao J J, Li X J, Dhillon B S. Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network [J]. MImnical S and Signal Processing, 2012, 27: 696-71 I. 被引量:1
  • 7M. Saimurugan, K. I. Ramachandran, V. Sugumaran, N. R. Sakthivel. Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine[J]. Expert S with Applie, ationa, 2011, 38, 3819-3826. 被引量:1
  • 8WU Bin, YU Shah-ping, LUO Yue-gang, FENG Chang- jian. Rolling bearing faults diagnosis method based on SVM- HMM[J]. Mmaiag Toclmology and Mhattoai Automon, 2010, 3: 295-298. 被引量:1
  • 9LI Xiao-feng, FU Yun-xiao, JIA Li-min. Fault diagnosis of railway axlebox bearing based on wavelet packet and neural network[J]. ADpliod Moehsmi lind , 2012, 226-228: 749-755. 被引量:1
  • 10BIN G F,GAO J J,LI X J,et al.Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode decomposition feature extraction and neural network[J].Mechanical Systems and Signal Processing,2012,27:696-711. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部