摘要
设D是无平方因子且不能被3或6l+1之型素数整除的正整数,用初等方法讨论了Diophantine方程x 3+113=Dy2整数解的情况,并且给出x<104时方程x3+113=Dy2的所有整数解.
Let D be a positive integer with square free and can not be divided by 3 or primes of the form 6l + 1 , researched the solution of x^3 + 11^3 = Dy^2, given all the integer solution of the equation x^3 + 11^3 = Dy^2 with D 〉0 andx〈10^4.
出处
《高师理科学刊》
2008年第5期35-37,共3页
Journal of Science of Teachers'College and University