期刊文献+

两类只含整数根的色多项式 被引量:4

Two families of integral-root chromatic polynomials
下载PDF
导出
摘要 研究了两类只含整数根的色多项式,给出其相应图G为弦图的必要条件,并完全刻画了G的色等价类[G]. In this paper, two families of integral-root chromatic polynomials are researched. For a graph G with one of above two integral-root chromatic polynomials, a necessary condition for G being a chordal graph is gave; Furthermore, this paper characterizes completely the structure of any graph of the chromatic equivalence class [G].
作者 龚和林 舒情
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第3期467-472,共6页 Pure and Applied Mathematics
基金 国家自然科学基金(10561002)
关键词 n-临界图 色多项式 弦图 非弦图 n-critical graph, chordal graph, chromatic polynomial, non-chordal graph
  • 相关文献

参考文献8

  • 1Bondy J A, Murty U S R. Graph Theory with Applications [M]. London:Macmillan, 1976. 被引量:1
  • 2Koh K M, Teo K L. The search for chromatically unique graphs [J]. Graphs and Combinatorics, 1990, 6:259-285. 被引量:1
  • 3Dong F M, Teo K L, Koh K M, et al. Non-chordal graphs having integral-root chromatic polynomials II [J]. Discrete Math, 2002, 245:247-253. 被引量:1
  • 4董峰明.广义轮图的色多项式唯一性[J].Journal of Mathematical Research and Exposition,1990,10(3):447-454. 被引量:11
  • 5Read R C. An introduction to chromatic polynomials [J]. Combin. Theory, 1968, 4:52-71. 被引量:1
  • 6Whitehead Jr E G. Chromaticity of two-trees [J]. Graph Theory, 1985, 9:279-284. 被引量:1
  • 7Vaderlind P. Chromaticity of triangulated graphs [J]. Graph Theory, 1988, 12:245-248. 被引量:1
  • 8Chao C Y, Li N Z, Xu S J. On q-trees [J]. Graph Theory, 1986, 10:129-136. 被引量:1

二级参考文献1

共引文献10

同被引文献27

  • 1宝音,张秉儒.S^(P(i))类图簇的伴随多项式的因式分解及其色性分析[J].西南师范大学学报(自然科学版),2004,29(4):573-577. 被引量:10
  • 2任海珍,刘儒英.ζ图族伴随多项式最小根的刻画[J].西南师范大学学报(自然科学版),2006,31(3):15-18. 被引量:4
  • 3李慰萱 田丰.关于图的色多项式的若干问题.数学学报,1978,21(3):223-230. 被引量:3
  • 4BONDY J A, MURTY U. Graph Theory with Applications [M]. New York: American Elesvier Pub Co, 1976. 被引量:1
  • 5KOH K M, TEO K L. The Search for Chromatically Unique Graphs [J]. Graphs and Combinatorics, 1990, 6(3): 259 - 285. 被引量:1
  • 6DONG F M, KOH K M. Non Chordal Graphs Having Integral-Root Chromatic Polynomials [J]. Bull Combin Appl, 1998, 22: 66--77. 被引量:1
  • 7DONG F M, TEO K I., KOH K M, et al. Non Chordal Graphs Having Integral-Root Chromatic Polynomials II [J]. Discrete Math, 2002, 245: 247- 253. 被引量:1
  • 8SANTOS H, FLORIAN L. Integer Roots Chromatic Polynomials of Non-Chordal Graphs and the Prouhet-Tarry-Escott Problem [J]. Graphs and Combinatorics, 2005, 21(3): 319--323. 被引量:1
  • 9Bondy J A, Murty U S. Graph theory with applications [ M ]. Amsterdam: North-Holland, 1976. 被引量:1
  • 10Dong F M, Koh K M, Teo K L. Chromatic polynomials and chromaticity of graphs [ M ]. Singapore, 2005. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部