期刊文献+

一种快速的频繁子图挖掘算法 被引量:4

A fast algorithm for mining frequent subgraphs
下载PDF
导出
摘要 提出了一种基于关联矩阵的频繁子图挖掘算法。该算法通过对关联矩阵的标准化,有效地降低了子图同构判断的代价。在此基础上,算法利用深度优先的思想,通过逐步扩展频繁边找出所有频繁子图。实验结果表明,该算法比其他同类算法具有更快的速度和更好的稳定性。 An algorithm for mining frequent subgraphs based on associated matrix was proposed. By normalizing the associated matrix of the graph, the computational cost on verifying the isomorphism of the subgraphs was effectively reduced. Based on the depth-first searching method, all the frequent subgraphs could be searched by adding edges progressively. Experimental results show that the algorithm has higher speed and better stability than other similar ones.
作者 吴甲 陈崚
出处 《计算机应用》 CSCD 北大核心 2008年第10期2533-2536,2557,共5页 journal of Computer Applications
基金 国家科技攻关项目(2003BA614A-14) 国家自然科学基金资助项目(60673060) 江苏省自然科学基金资助项目(BK2005047) 南京大学软件新技术国家重点实验室开放基金资助项目
关键词 关联矩阵 同构 数据挖掘 graph associated matrix isomorphism data mining
  • 相关文献

参考文献14

  • 1HAN J, KAMBER M. Data Mining: Concepts and Techniques[ M]. 2nd ed. San Francisco: Morgan Kaufmann Publishers, 2006:467 -489. 被引量:1
  • 2COOK D, HOLDER L. Mining Graph Data[ M]. New Jersey: John Wiley & Sons, 2007:99 -115. 被引量:1
  • 3HOLDER L B, COOK D J, DJOKO S. Substructure discovery in the subdue system[ C]//Proceedings of the AAAI 94 Workshop Knowledge Discovery in Databases. Menlo Park, CA: AAA Press, 1994: 169- 180. 被引量:1
  • 4INOKUCHI A, WASHIO T, OKADA T, et al. Applying algebraic mining method of graph substructures to mutageniesis data analysis[ C]// Proceedings of the PAKDD 2000. Kyoto: Springer-Verlag, 2000:41 - 46. 被引量:1
  • 5KURAMOCHI M, KARYPIS G. An efficient algorithm for discovering frequent subgraphs[ J]. IEEE Transactions on Knowledge Data Engineering, 2004, 16(9) : 1038 - 1051. 被引量:1
  • 6KURAMOCHI M, KARYPIS G. Frequent subgraph discovery[ C]//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM'01). Washington, DC: IEEE Computer Society, 2001:313-320. 被引量:1
  • 7YAN Y, HAN J. gSpan: Graph-based substructure pattem mining[ C]// Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02). Washington, DC: IEEE Computer Society, 2002: 721. 被引量:1
  • 8HUAN J , WANG W , PRINS J . Efficient mining of frequent subgraphs in the presence of isomorphism[ C]// Proceedings of the 2003 IEEE International Conference on Data Mining( ICDM' 03). Washington, DC: IEEE Computer Society, 2003: 549. 被引量:1
  • 9李玉华,罗汉果,孙小林.一种基于Apriori思想的频繁子图发现算法[J].计算机工程与科学,2007,29(4):84-87. 被引量:5
  • 10NGUYEN P C, WASHIO T, OHARA K, et al. Using a hash-based method for Apriofi-based graph mining[ C]// Proceedings of the PKDD 2004. New York: Springer-Vedag, 2004:349-361. 被引量:1

二级参考文献28

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 3Borgelt C, Berhold MR. Mining molecular fragments: Finding relevant substructures of molecules. In: Proc. of the ICDM 2002. 2002. http://www.wi-lab.condicdm02/ 被引量:1
  • 4Holder LB, Cook D J, Djoko S. Substructures discovery in the subdue system. In: Proc. of the AAAI'94 Workshop Knowledge Discovery in Databases. 1994. 169-180. 被引量:1
  • 5Inokuchi A, Washio T, Okada T, Motoda H. Applying algebraic mining method of graph substructures to mutageniesis data analysis. In: Proc. of the PAKDD. 2000. http://www.informatik.nni-trier.de/-ley/db/conf/pakdd/pakdd2000.html 被引量:1
  • 6Inokuchi A, Washio T, Okada T. An apriori-based algorithm for mining frequent substructures from graph data. In: Proc. of the PKDD 2000. LNAI 1910, 2000. 13-23. http://eric.univ-lyon2.fr/-pkdd2000/ 被引量:1
  • 7Kuramochi M, Karypis G. Frequent subgraph discovery. In: Proc. of the ICDM 2001. 2001. http://www.cs.york.ac.uk/arch/neural/ Conferences/ICDM2001 .html 被引量:1
  • 8Yan Y, Han J. gSpan: Graph-Based substructure pattern mining. In: Proc. of the 2002 Int'l Conf. on Data Mining (ICDM 2002). Maebashi, 2002. http://www.wi-lab.com/icdm02/ 被引量:1
  • 9Washio T, Motoda H. State of the art of graph-based data mining. In: Proc. of the SIGKDD 2003. http://www.sigkdd.org/kdd2003/ 被引量:1
  • 10Yan X, Han J. CloseGraph: Mining closed frequent graph patterns. In: Proc. of the 9th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining (KDD2003). Washington, 2003. http,://www.sigkdd.org/kdd2003/ 被引量:1

共引文献41

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部