期刊文献+

一种挖掘最大频繁项集的深度优先算法 被引量:20

A Depth-First Search Algorithm for Mining Maximal Frequent Itemsets
下载PDF
导出
摘要 最大频繁项集挖掘是许多数据挖掘应用中的重要问题.提出一种新的深度优先搜索最大频繁项集的算法.该算法采用位图数据格式,结合了流行的各种有效剪枝技术,并使用局部最大频繁项集来进行高效的超集存在判断,明显地加速了最大频繁项集的生成,从而降低了CPU时间. Maximal frequent itemsets mining is a fundamental and important problem in many data mining applications. Since the MaxMiner algorithm first introduced the enumeration tree for MFI mining in 1998, there have been several proposed methods using depth-first search to improve performance. Here presented is DFMfi, a new depth-first search algorithm for mining maximal frequent itemsets. DFMfi adopts bitmap data format, several popular prune techniques which prune the search space efficiently, and local maximal frequent itemsets for superset checking quickly. Experimental comparison with the previous work indicates that it accelerates the generation of maximal frequent itemsets obviously, thus reducing CPU time.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第3期462-467,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(9010402660073001)国家"八六三"高技术研究发展计划基金项目(2002AA144040)
关键词 最大频繁项集 深度优先搜索 位图 前瞻剪枝 maximal frequent itemsets depth-first search bitmap look-ahead pruning
  • 相关文献

参考文献14

  • 1路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 2宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 3颜跃进,李舟军,陈火旺.频繁项集挖掘算法[J].计算机科学,2004,31(3):112-114. 被引量:20
  • 4R. Agrawal, T. Imielinski, A. Swami. Mining association rules between sets of items in large databases. The 1993 ACM SIGMOD Int'l Conf. on Management of Data, Washington, D.C. USA,1993. 被引量:1
  • 5R. Agrawal, R. Srikant. Fast algorithms for mining association rules in large databases. The 20th Int'l Conf. on Very Large Databases, Santiago, Chile, 1994. 被引量:1
  • 6R. Agarwal, C. Aggarwal, V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 2001, 61(3): 350--371. 被引量:1
  • 7J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation. The 2000 ACM SIGMOD Int'l Conf. on Management of Data, Dallas, USA, 2000. 被引量:1
  • 8H. Mannila, H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery, 1997, 1(3): 241--258. 被引量:1
  • 9Lin DaoI, Kedem, Z. M. Pincer-Search: A new approach for discovering the maximum frequent set. The 6th European Conf. on Extending Database Technology, Valencia, Spain. 1998. 被引量:1
  • 10R. J. Bayardo. Efficiently mining long patterns from databases.The 1998 ACM SIGMOD Int'l Conf. on Management of Data,Seattle, Washington, USA, 1998. 被引量:1

二级参考文献30

  • 1Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页 被引量:1
  • 2Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页 被引量:1
  • 3Liu J Q,Pan Y H,Wang K,Han J W. Mining Frequent Item Sets by Opportunistic Projection, KDD'02, Edmonton, Canada, July 2002 被引量:1
  • 4Han J, Pei J,Yin Y. Mining Frequent Patterns without Candidate Generation. In: Proc. 2000ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),Dallas, TX, May 2000 被引量:1
  • 5Pei J,Hah J,Lu H, et al. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases,In:Proc. 2001 Int. Conf. on Data Mining(ICDM'01) ,San Jose,CA,Nov. 2001 被引量:1
  • 6Agarwal R,Aggarwal C,Prasad V V V. Depth first generation of long patterns. In:Proc. of SIGKDD Conf. 2000 被引量:1
  • 7Burdick D, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In:proc. of the 17th Intl. Conf. on Data Engineering,Heidelberg, Germany, April 2001 被引量:1
  • 8http://bbs. nuj. edu. cn/dataming/2350. htm 被引量:1
  • 9http://www. dmgroup. org. cn/zs20. htm 被引量:1
  • 10Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proc. 1993ACMSIGMOD Int. Conf. Management of Data,Washington,D.C. ,May 1993.207-216 被引量:1

共引文献231

同被引文献182

引证文献20

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部