摘要
对一类高低温两侧工质之间传热服从普适传热规律q∝(Δ(Tn))m的简单换热过程进行了研究,在低温侧工质温度初终态一定的条件下,以过程的熵产生最小化为优化目标,导出了加热侧工质温度变化的最优构型。采用数值计算求解给出了算例,并与传统的热流率一定和加热侧工质温度一定两种换热策略进行了比较。得出了对应于最小熵产生时的熵产率为常数不仅在牛顿传热定律q∝ΔT、线性唯象传热定律q∝ΔT-1时成立,而且在传热规律服从q∝(Δ(T-1))m时也成立的结论。结果具有一定的普适性和包容性,对实际换热器的设计与工作具有一定的理论指导作用。
A common problem of finite-time heat transfer processes between high- and low-temperature sides with a generalized heat transfer law q^∝(△(T^n))^m was studied in this paper. The optimal heating and cooling configurations for minimizing entropy generation were derived for the fixed initial and final temperatures of the low-temperature side working fluid. Optimal paths were compared with the common strategies of constant heat flux and constant source temperature operation by numerical examples. The condition corresponding to the minimum entropy generation strategy is that corresponds to a constant rate of entropy generation, not only valid for the Newton's and linear phenomenological heat transfer laws but also valid for heat transfer law q^∝(△(T^n))^m. The obtained results are more general and can provide some theoretical guidelines for the designs and operations of practical heat exchangers.
出处
《热科学与技术》
CAS
CSCD
2008年第3期226-230,共5页
Journal of Thermal Science and Technology
基金
教育部新世纪优秀人才支持计划项目(NCET-04-1006)
全国优秀博士学位论文作者专项资金资助项目(200136)
关键词
有限时间热力学
最小熵产生
最优控制
换热过程
传热规律
finite time thermodynamics
entropy generation
optimal control
heat transfer process
heat transfer law