期刊文献+

基于内容的多层次语义视频对象提取方法研究

Algorithm of content-based multi-hierarchy semantic video object extraction
下载PDF
导出
摘要 视频对象的提取在序列图像的分析中起着重要作用。提出一个基于内容的多层次视频的对象提取算法,利用高斯马尔可夫模型对其进行颜色和纹理的混合特征图像分割。利用Normalize-cut准则,对其运动信息进行分析,然后进行区域聚合,即得到具有语义的视频对象。对于背景运动信息较丰富的序列图像可以取得良好的提取效果。 Extracting of semantic video object plays an important role in analysis of serial images. This paper proposes a new approach of content-based multi-hierarehy semantic video object extraction. It uses Gaussian- Markov random field model for image segmentation, which aims at combining color and texture features. The grouping process is based on the analysis of motion information of the different feature classes via normalize-cut mles. The semantic video objects are extracted by the proposed method. It has good results in videos of which background has rich motion information.
出处 《信息技术》 2008年第9期31-34,共4页 Information Technology
关键词 基于内容的分割和聚合 视频对象分割 高斯马尔可夫模型 Normalize—cut准则 content-based segmentation and grouping semantic video object Gaussian-Markov random field model normalize-cut role
  • 相关文献

参考文献6

  • 1Robles-Kelly A, Hancock E R. An expectation-maximisation framework for segmentation and grouping[J]. Image and Vision Computing,2002, 20 : 725 - 738. 被引量:1
  • 2Kato Z, Pong T C. A Markov random field image segmentation model for color textured images[ J]. Image and Vision Computing, 2006,24 : 1103- 1114. 被引量:1
  • 3Di Zhong, Shih-Fu Chang. An Integrated Approach for Content-Based Video Object Segmentation and Retrieval [ J ]. IEEE Transactions on Circuits and Systems For Video Technology, 1999,9(8) : 1259 - 1268. 被引量:1
  • 4Shi J, Malik J. Normalized cut s and image segmentation [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22 (8) :888 - 905. 被引量:1
  • 5Guorong Xuan, Wei Zhang, Peiqi Chai. EM algorithms of Gaussian mixture model and hidden Markov model [ J ]. Department of Computer Science, 2001 : 145 - 148. 被引量:1
  • 6余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17

二级参考文献19

  • 1余鹏,封举富.基于高斯混合模型的纹理图像分割[J].中国图象图形学报(A辑),2005,10(3):281-285. 被引量:27
  • 2郑肇葆,周月琴.马尔柯夫随机场的参数估计与影像纹理分类[J].测绘学报,1995,24(1):45-51. 被引量:8
  • 3SNOUSSI H,M-DJAFARI A.Penalized Maximum Likelihood for Multivariate Gaussian Mixture[A].AIP Conference Proceedings[C].[s.l.]:[s.n.],2002,617,(1):36-46. 被引量:1
  • 4ROBERTS S J,HUSMEIER D,REZEK I,PENNY W.Bayesian Approaches to Gaussian Mixture Modeling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):887-906. 被引量:1
  • 5FIGUEIREDO M A T,JAIN AK,Unsupervised Learning of Finite Mixture Models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):381-396. 被引量:1
  • 6BIERNACKI C,CELEUX G,GOVAERT G.Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):719-725. 被引量:1
  • 7AMBROISE C,DANG M,GOVAERT G.Clustering of Spatial Data by the EM Algorithm[A].GeoENV I-Geostatistics for Environmental Applications,vol.9 of Quantitative Geology and Geostatistics[C].Dordrecht:Kluwer Academic Publisher,1997,493-504. 被引量:1
  • 8RIDDER D,KITTLER J,DUIN R P W.Probabilistic PCA and ICA Subspace Mixture Models for Image Segmentation[A].British Machine Vision Conference[C].Bristol:University of Bristol,2000,112-121. 被引量:1
  • 9LI S Z.Markov Random Field Modeling in Computer Vision[M].Berlin:Springer-Verlag,1995. 被引量:1
  • 10LASKSHMANAN S,DERIN H.Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11,799-813. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部