期刊文献+

基于SOFM神经网络的茄子图像分割方法 被引量:9

Method of image segmentation for eggplant based on SOFM neural network
下载PDF
导出
摘要 以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等指标来评价分割精度。试验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。 The purpose of this article was to segment eggplant from its complex background. R-B , G-B and H were selected as the input-vectors of the self-organizing feature maps (SOFM) network based on analyzing the color-difference and hue characteristics of eggplant image. The input-vectors were classified according to the self-organizing characteristics of this network. In order to make the segmentation results objective and reasonable, signal-noise ratio, area ratio, segmentation times and Fourier-Descriptor were a- dopted to evaluate the segmentation precision. The experiment demonstrates that SOFM network was better than the single-threshold segmentation and more suitable for the color image segmentation with complex background.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2008年第3期140-144,共5页 Journal of Nanjing Agricultural University
关键词 茄子 图像分割 自组织特征映射(SOFM)网络 傅里叶描述子 eggplant image segmentation self-organizing feature maps (SOFM) network Fourier-Descriptor
  • 相关文献

参考文献20

二级参考文献93

共引文献438

同被引文献141

引证文献9

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部