期刊文献+

基于稀疏近似逆预处理的牛顿-广义极小残余潮流计算方法 被引量:14

Load Flow Calculation of Newton-GMRES Method With Sparse Approximate Inverse Preconditioners
下载PDF
导出
摘要 研究了潮流迭代求解中的雅可比矩阵预处理方法。利用矩阵分裂以及矩阵求逆运算的松弛方法,提出了两种新的稀疏近似逆预条件子或预处理方法,这两种预处理方法与牛顿-广义极小残余算法相结合,可以改进潮流计算的收敛性。最后用IEEE 300节点系统的分析计算结果验证了所提方法的有效性。 The preconditioning techniques of Jacobian matrix for load flow iterative solution are researched. Using matrix splitting and relaxation method of matrix inversion, two new sparse approximate inverse preconditioners or preconditioning methods are proposed. Combining these two preconditioning methods with Newton-GMRES algorithm, the convergence of load flow solution can be efficiently improved. The effectiveness of the proposed approaches is verified by IEEE 300-bus system.
出处 《电网技术》 EI CSCD 北大核心 2008年第14期50-53,共4页 Power System Technology
关键词 潮流计算 牛顿-广义极小残余算法 预处理 矩阵分裂 松弛方法 稀疏近似逆 load flow calculation Newton-GMRES method preconditioning matrix splitting relaxation method sparse approximate inverse
  • 相关文献

参考文献13

二级参考文献44

  • 1[1]Kolotiliin Y., Yeremin A., Factorized sparse approximate inversepreconditions, SIAM J. Matrix Anal. Appl., 1993, 14: 45-58. 被引量:1
  • 2[2]Grote, Simon H., Parallel preconditioning and approximateinverse on the connection machine. In: Proceedings of the Scalable High Performance Computing Conference (SHPCC), IEEE Press, Piscataway, NJ,1992, 76-83. 被引量:1
  • 3[3]Chow E., Saad Y., Approximate inverse techniques forblock-partitioned matrics. SIAM J. Sci. Comput., 1997, 18(6):1657-1675 被引量:1
  • 4[4]Duff I. S., Grimes R.G., Lewis J.G., User's guide for theHarwell-Boeing sparse matrix collection (Release 1). Tech. ReportRAL-92-086, Rutherford Appletori Laboratory, Chilton, UK, 1992. 被引量:1
  • 5[5]Davis. Sparse matrix collection. NA Digest, 1994, 94(10), Issue42. 被引量:1
  • 6莫则尧.[D].北京应用物理与计算数学研究所计算物理实验室,1999. 被引量:1
  • 7迟利华.[D].湖南长沙国防科技大学,1998. 被引量:1
  • 8Hestenes M R,Stiefel E. Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. ,1952,49:409~436 被引量:1
  • 9Concus P,Golub G H, O' Leary D P. A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. In: J. R. Bunch and D.J. Rose, eds. Sparse Matrix Computions, Academic Press, 1976. 309~ 332 被引量:1
  • 10Saad Y. Krylov Subspace methods for solving large unsymmetric linear systems. Math. Computing,1981 被引量:1

共引文献53

同被引文献106

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部