期刊文献+

ANN模型与多元线性回归在毛精纺织造预报中的对比 被引量:1

Contrast between multiple linear regression and artificial neural network for wool worsted weaving forecasting
下载PDF
导出
摘要 介绍了应用在毛精纺面料织造质量预报过程中的人工神经网络技术(ANN)和多元线性回归方法,给出了2种方法在建立各自模型时的主要工作,并在此基础上建立了织机效率和织疵公分数的2种预报模型,最后通过2种模型的预报结果对比验证了ANN模型和多元线性回归预报模型在毛精纺织造过程预报中的性能,同时得出了2种预报模型在解决线性和非线性问题上的优劣,以及毛精纺织造过程中的纱线品质和工艺参数与织造质量指标之间的线性或非线性关系。 The neural network technology and multiple linear regression used to weaving process of wool worsted were introduced in this paper. The main jobs for setting up two kinds of forecast models by these two methods for weaving process were put forward. The models to predict the loom efficiency and fabric defects were given, too. The character of the neural network and multiple linear regression models were demonstrated and contrasted by the forecast results, and the contrast between these two models for solving the nonlinear and linear problems was shown. The linear or nonlinear relationships between the yarn quality and weaving parameters and woven quality indexes were also given.
作者 刘茜 王玉亮
出处 《毛纺科技》 CAS 北大核心 2008年第7期42-44,共3页 Wool Textile Journal
关键词 毛精纺 织造 质量预报 人工神经网络 多元线性回归 wool worsted weaving quality forecasting artificial neural network multiple linear regression
  • 相关文献

参考文献3

二级参考文献6

  • 1胡守仁.神经网络应用技术[M].北京:国防科技大学出版社,1998.. 被引量:19
  • 2Pynckels F,Kiekens P,Langenhove L Van,et al.Use of neural nets for determining the spinnability of fiber.J Text Inst,1995,86(3):425-437 被引量:1
  • 3王玉亮,于伟东.织造工艺过程质量预报及质量控制.第24届全国毛纺年会论文集,安徽黄山,2004:240-244 被引量:1
  • 4Feng C,Jefrey Kuo,Lee C J.A Back-Propagation neural network for recognizing fabric defects.Text Res J,2003,73(2):147-151 被引量:1
  • 5Jackowska,Strumillo L,Jackowski T,Chylewska B,et al.Application of a hybrid neural model for determination of selected yarn parameters.Fiber&Textile in Eastern Europe,1998,4(23):27-32 被引量:1
  • 6张瑞林,蒋静坪.人工神经网络在纺织中的应用[J].浙江工程学院学报,2001,18(4):201-207. 被引量:9

共引文献5

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部