期刊文献+

基于步进均值子时段MPLS的荒管质量预测模型研究 被引量:2

Step mean value staged MPLS based predictive model for shell quality
下载PDF
导出
摘要 针对无缝钢管连轧生产中衡量荒管质量好坏的横向和纵向壁厚不均检验滞后和难以建立其机理模型的问题,提出了基于步进均值子时段MPLS方法的荒管质量预报模型.介绍了步进均值子时段MPLS方法中过程数据时段分解、均值求取、回归模型建立和模型在线预报等关键内容.将建立的预报模型用于荒管质量预报中,为提高连轧生产的无缝钢管质量奠定了良好的基础.其实时性良好,可靠性和精度高,可用于荒管质量的在线预报和优化. The shell is produced by the semi-floating mandrel mill, whose shell longitudinal and transversal wall thickness unevenness is often checked laggingly. The quality prediction of the shell model based on step mean value staged MPLS (multiway partial least square) method is proposed to overcome the disadvantage. The staged decomposition of the productive data, calculation of the mean value in the mean value MPLS method, modeling, and on-lined prediction are introduced. The model used in the shell quality prediction can improve seamless tubes quality of mandrel mill made effectively. Its obvious benefits are good real time function, high reliability precision, and can be used on-line for the prediction and optimization on the quality of the shell.
出处 《控制与决策》 EI CSCD 北大核心 2008年第4期431-434,438,共5页 Control and Decision
基金 国家自然科学基金项目(60674063) 教育部暨辽宁省流程工业综合自动化重点实验室开放课题项目
关键词 无缝钢管 连轧荒管 质量预报 步进均值子时段MPI-S Seamless tubes Mandrel mill made shell Quality prediction Step mean value staged MPLS
  • 相关文献

参考文献11

  • 1王先进,徐树成.钢管连孔理论[M].北京:冶金工业出版社,2005. 被引量:1
  • 2王北明.热轧钢管的质量[M].北京:冶金工业出版社,1987. 被引量:4
  • 3Levesque D, Kruger S E, Lamouche G, et al. Thickness and grain size monitoring in seamless tube- making process using laser ultrasonics[J]. NDT and E Int, 2006, 39(8): 622-626. 被引量:1
  • 4Reggio M, McKenty F, Gravel L, et al. Computational analysis of the process for manufacturing seamless tubes [J]. Applied Thermal Engineering, 2002, 22(4): 459- 470. 被引量:1
  • 5刘东东,王焱.基于RBF神经网络的热连轧精轧厚度的预报[J].济南大学学报(自然科学版),2006,20(4):312-314. 被引量:7
  • 6Nomikos P, MacGregor J F. Multi-way partial least square in monitoring batch processes[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1)I 97- 108. 被引量:1
  • 7Leo H Chiang, Riccardo Leardi, Randy J Pell. Industrial experiences with multivariate statistical analysis of batch process data[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 81(2): 109-119. 被引量:1
  • 8Yale Zhang, Michael Dudzic. Industrial application of multivariate SPC to continuous caster start-up operations for breakout prevention [J]. Control Engineering Practice, 2006, 14(11) : 1357-1375. 被引量:1
  • 9Dae Sung Leea, Jong Moon Parka. Adaptive multiseale principal component analysis for on-line monitoring of a sequencing batch reactor[J]. J of Biotechnology, 2005, 116(2) : 195-210. 被引量:1
  • 10宋箭平,周志杨,吴跃泉.连轧管横向壁厚精度初探[J].宝钢技术,1997(6):39-41. 被引量:5

二级参考文献5

共引文献11

同被引文献26

  • 1刘宝,吴钢,宋光明.基于BP神经网络的表面硬度预测模型[J].热处理技术与装备,2006,27(3):37-39. 被引量:1
  • 2MacGregor J F, Jaeckle C, Kiparissides C. Process Monitoring and Diagnosis by Multiblock PLS Methods[J].AIChE Journal, 1994, 40(5): 826. 被引量:1
  • 3Piovoso M J, Kosanovich K A. Application of Multivariate Statistical Methods to Process Monitoring and Controller Design [J]. International Journal of Control, 1994, 59(3):743. 被引量:1
  • 4Nomikos P, MacGregor J F. Multivariate SPC Charts for Monitoring Batch Processes[J]. Technometrics, 1995, 37(1): 41. 被引量:1
  • 5ZHAO Chun-hui, WANG Fu-li, MAO Zhi-zhong, et al. Quality Prediction Based on Phase-Specific Average Trajectory for Batch Processes [J]. AIChE Journal, 2008, 54(3): 693. 被引量:1
  • 6Nomikos P, MacGregor J F. Multi-Way Partial Least Squares in Monitoring Batch Process[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1):97. 被引量:1
  • 7ZHAO Chun-hui, WANG Fu-li, MAO Zhi-zhong, et al. Improved Batch Process Monitoring and Quality Prediction Based on Multi-Phase Statistical Analysis [J]. Industrial and Engineering Chemistry Research, 2008, 47(3): 835. 被引量:1
  • 8Ferrer A, Aguado D, Vidal P S, et al. PLS: A Versatile Tool for Industrial Process Improvement and Optimization [J]. Applied Stochastic Models in Business and Industry. 2008, 24 (6):551. 被引量:1
  • 9Helland I S. On the Structure of Partial Least Squares Regression[J]. Communications in statistics, 1988, 17(2): 581. 被引量:1
  • 10Kourti T. Multivariate Dynamic Data Modeling for Analysis and Statistical Process Control of Batch Processes, Start-Ups and Grade Transitions [J]. Journal of Chemometrics, 2003, 17(1):93. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部