期刊文献+

扇的倍图的邻点可区别边色数 被引量:1

The Chromatic Number of Adjacent-strong Edge Coloring of the Double Graph D(F_m)
原文传递
导出
摘要 设G(V,E)是阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)│uw∈E(G)},而χa′s(G)=min{k│存在G的一个k-ASEC},称为G的邻点可区别边色数.本文给出扇的倍图D(Fm)的邻点可区别边色数. Let G = (V,E) be a normal simple connected graph of order ≥3. A k -normal edgecoloring f for G is called a k- adjacent strong edge-coloring (shortly, k- ASEC) for G if any two adjacent vertices are incident to different sets of colored edges. The minimum of all positive integers k such that there is a k- ASEC for G is said to be the chromatic number of adjacent strong edge coloring of G and denoted by Xas(G). In this paper, we compute the chromatic number of adjacent strong edge coloring of the double graph D(Fm).
出处 《数学的实践与认识》 CSCD 北大核心 2008年第15期221-224,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金资助项目(10771091) 陕西省教育厅科研基金项目(07JK209)
关键词 倍图 邻点可区别边色数 Graph double graph fan chromatic number of adjacent strong edge coloring
  • 相关文献

参考文献6

二级参考文献10

  • 1任韩,刘彦佩,马登举,卢俊杰.CYCLE SPACES OF GRAPHS ON THE SPHERE AND THE PROJECTIVE PLANE[J].Acta Mathematica Scientia,2005,25(1):41-49. 被引量:1
  • 2Balister, P.N, Bollobas, B, Schelp, R.H. Vertex-distinguishing colorings of graphs with △(G) = 2. Discrete Mathmatics, 252(1-3): 17-29 (2002) 被引量:1
  • 3Bazgan, C. Harkat-Bcnhamdine, A, Li, H, Wozniak, M. On the vertex-distinguishing proper edge-colorings of graphs. Journal of Combinatorial Theory (series B), 75(3): 288-301 (1999) 被引量:1
  • 4Burris, A.C, Schelp, R.H. Vertex-Distingushing proper edge-colorings. Journal of Graph Theory, 26(2):73-82 (1997) 被引量:1
  • 5Chartrand, G, Lesniak, L. Graphs and digraphs (2nd ed). Wadsworth Brooks, Cole, Monterey, CA, 1986 被引量:1
  • 6Harary, F. Graph theory. Addison-Wesley, Reading, Mass, 1969 被引量:1
  • 7Liu, H.M, Chen,Z.Q. The Classification of graph K(4, n) and Gn. J. of Math, 16(4): 531-533 (1996) 被引量:1
  • 8Liu, L.Z, Zhang, Z.F, Wang, J.F. On thc edge binding number of some plane graphs. Acta Math. Appl.Sinica, 17(4): 443-448 (2001) 被引量:1
  • 9Zhang, Z.F, Liu, L.Z, Wang, J. F. Adjacent strong edge coloring of graphs. Applied Mathematics Letters,15(5): 623-626 (2002) 被引量:1
  • 10Zhang, Z.F, Liu, L.Z. On the complete chromatic number of Halin graphs. Acta Math. Appl. Sinica,13(3): 102-106 (1997) 被引量:1

共引文献102

同被引文献12

  • 1陈祥恩,张忠辅.Adjacent-Vertex-Distinguishing Total Chromatic Number of P_m×K_n[J].Journal of Mathematical Research and Exposition,2006,26(3):489-494. 被引量:16
  • 2张忠辅 陈祥恩 李敬文 等.关于图的邻点可区别全染色.中国科学:A辑,2005,48(3):289-299. 被引量:2
  • 3田双亮,陈萍.两类积图的邻点可区别全染色[J].Journal of Mathematical Research and Exposition,2007,27(4):733-737. 被引量:6
  • 4ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs [ J ]. Applied Mathematics Let- ters, 2002, 15:623-626. 被引量:1
  • 5BALISTER P N, GYORI E, LEHEL J, et al. Adjacent vertex distinguishing edge-colorings [J]. SIAM J. Discrete Math, 2007, 21 ( 1 ) :237-250. 被引量:1
  • 6TIAN Shuangliang, CHEN Ping, SHAO Yabin, et al. Adjacent vertex distinguishing edge-colorings and total-colorings of the cartesian product of graphs[ J]. Control and Optimization, 2014, 4( 1 ) :49-58. 被引量:1
  • 7BARIL J-L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge-colorings of meshes and hypercubes[J]. Aus- tralasian Journal of Combinatories, 2006, 35 : 89-102. 被引量:1
  • 8CHEN Meirun, GUO Xiaofeng. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes[ J]. Informa- tion Processing Letters, 2009, 109:599-602. 被引量:1
  • 9BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: American Elsevier, 1976. 被引量:1
  • 10YAP H P. Total Coloring of graph[ M]. New York: Springer Verlag, 1996. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部