摘要
设G(V,E)是阶数至少是3的简单连通图,若f是图G的k-正常边染色,使得对任意的uv∈E(G),C(u)≠C(v),那么称f是图G的k-邻点可区别边染色(k-ASEC),其中C(u)={f(uw)│uw∈E(G)},而χa′s(G)=min{k│存在G的一个k-ASEC},称为G的邻点可区别边色数.本文给出扇的倍图D(Fm)的邻点可区别边色数.
Let G = (V,E) be a normal simple connected graph of order ≥3. A k -normal edgecoloring f for G is called a k- adjacent strong edge-coloring (shortly, k- ASEC) for G if any two adjacent vertices are incident to different sets of colored edges. The minimum of all positive integers k such that there is a k- ASEC for G is said to be the chromatic number of adjacent strong edge coloring of G and denoted by Xas(G). In this paper, we compute the chromatic number of adjacent strong edge coloring of the double graph D(Fm).
出处
《数学的实践与认识》
CSCD
北大核心
2008年第15期221-224,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金资助项目(10771091)
陕西省教育厅科研基金项目(07JK209)
关键词
图
倍图
扇
邻点可区别边色数
Graph
double graph
fan
chromatic number of adjacent strong edge coloring