期刊文献+

一种多样性控制的粒子群优化算法 被引量:17

Diversity-controlled particle swarm optimization algorithm
下载PDF
导出
摘要 针对粒子群优化(PSO)算法的早熟收敛问题,提出一种新的基于群体多样性控制的PSO算法(DCPSO).该方法使得粒子在收缩状态下充分搜索,在发散状态下能够飞离群体的聚集位置,不断的收缩-发散过程保证了群体能在较大的空间进行搜索,减少了粒子群算法的早熟收敛现象.通过对多个标准测试函数的实验结果表明,DCPSO算法在复杂优化问题中具有较强的全局搜索能力,而且比现有的多样性指导的PSO算法(ARPSO)具有更好的性能. Aiming at the premature convergence problem in particle swarm optimization (PSO) algorithm, a novel diversity-controlled PSO (DCPSO) algorithm is proposed. Guided by the controlled swarm's diversity, the particles search in the attractive phase sufficiently and adjust themselves by moving away from the center of the swarm quickly in the repulsive phase. The attractive-repulsive procedure can guarantee the population search in a wide space and help to avoid trapping into the local minima. Experimental results on several well-known benchmark functions show that DCPSO has strong global optimization ability in the complicated problems and outperforms the existing diversityguided PSO (ARPSO).
出处 《控制与决策》 EI CSCD 北大核心 2008年第8期863-868,共6页 Control and Decision
基金 国家自然科学基金项目(60474030)
关键词 粒子群优化 早熟收敛 多样性 全局收敛 Particle swarm optimization Premature convergence Diversity Global convergence
  • 相关文献

参考文献10

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of IEEE Int Conf of Neural Networks. Perth, 1995: 1942-1948. 被引量:1
  • 2Clerc M, Kennedy J. The particle swarm - Explosion, stability and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation,2002, 6(2): 58-73. 被引量:1
  • 3Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better[J]. IEEE Trans on Evolutionary Computation, 2004, 8: 204-210. 被引量:1
  • 4Shi Y, Eberhart R C. A modified particle swarm[C]. Proc of IEEE Int Conf on Evolutionary Computation. Anchorage, 1998: 1945-1950. 被引量:1
  • 5曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 6刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 7周驰,高亮,高海兵.基于粒子群优化算法的约束布局优化[J].控制与决策,2005,20(1):36-40. 被引量:33
  • 8Riget J, Vesterstrφm J S. A diversity-guided particle swarm optimizer - The ARPSO [R]. Denmark: University of Aarhus, 2002. 被引量:1
  • 9Rasmus K Ursem. Diversity-guided evolutionary algorithms[C]. Proc of Parallel Problem Solving from Nature VII(PPSN-2002). Heidelberg: Springer-Verlag, 2002: 462-471. 被引量:1
  • 10Clerc M. The swarm and the queen:-Towards a deterministic and adaptive particle swarm optimization [C]. Proc of the Congress on Evolutionary Computation. Washington: IEEE Service Center, 1999: 1951-1957. 被引量:1

二级参考文献23

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158
  • 3单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:196
  • 4Yoshida H, Kawata K, Yoshikazu Fukuyama. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J].IEEE Trans on Power System, 2000, 15 (4):1232-1239. 被引量:1
  • 5Chen C L, Chen N. Direct search method for solving economic dispatch problem considering transmissioncapacity constraints[J]. IEEE Trans on Power System,2001,16(4) : 764-769. 被引量:1
  • 6Franchini M. Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models[J]. Hydrological Science J, 1996, 41(1): 21-39. 被引量:1
  • 7Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc of IEEE Int Conf on Neural Networks[C].Perth, 1995 : 1942-1948. 被引量:1
  • 8Shi Y H, Eberhart R C. Empirical study of particle swarm optimization[A]. Proc of IEEE Congress on Evolutionary Cornputation[C]. Washington, 1999:6-9. 被引量:1
  • 9Kennedy J,Eberhart R.Swarm Intelligence[M].San Francisco:Morgan Kaufmann Publishers,2001. 被引量:1
  • 10Boeringer D W,Werner D H.Particle Swarm Optimization Versus Genetic Algorithms for Phased Array Synthesis[J].IEEE Trans on Antennas and Propagation,2004,52(3):771-779. 被引量:1

共引文献115

同被引文献174

引证文献17

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部