期刊文献+

基于免疫遗传算法的三维大脑图像分割(英文) 被引量:8

Effective Immune Genetic Algorithm for Segmentation of 3D Brain Images
下载PDF
导出
摘要 利用最大熵多阈值方法对三维大脑数据进行分割时,穷尽搜索法耗时长,而简单遗传算法的搜索结果又不够稳定和精确。针对该问题,提出了一种免疫遗传和模拟退火相结合的新算法来快速求解全局最大熵。与简单遗传算法相比,免疫遗传算法采用了更佳的选择操作,以确保更多不同个体被选择来保存种群的多样性,而模拟退火机制用于拉伸免疫遗传算法的适应度函数。算法给出了选择概率的一般表达式,并采用精英策略和自适应的交叉、变异机制以改善算法的收敛性。基于IDL平台的100次仿真结果表明,三维大脑数据被成功地分为:脑白质、脑灰质和脑脊液三部分,且与简单遗传算法和传统免疫遗传算法相比,本文算法在稳定性和精确性上更具优势。 To solve large time-consumption of the complete search (CS), and the instability and inaccurateness of the simple genetic algorithm (SGA), an effective 3D brain images segmentation procedure, utilizing optimal entropy multi-thresholding method, was proposed. Global maximum entropy for the segmentation was yielded fast by the combination of the immune genetic algorithm (IGA) and simulated annealing (SA). Compared to the SGA, the IGA constructs a better selection scheme and ensures various individuals to be selected for preserving the diversity of the population. Meanwhile, the optimal entropy function of 3D medical images is stretched by the SA to construct the new fitness function, and the general expressing form of the selection probability for IGA is also given. Furthermore, to enhance the convergence of our algorithm, the proposed method includes the elitist strategy and the adaptive crossover and mutation mechanism. Results of 100 simulations demonstrate that the 3D brain volume can be successfully classified into three parts: the white matter, the gray matter and the cerebrospinal fluid on the IDL platform. The stability and accuracy of the algorithm, compared with the SGA and IGA, are all improved according to their performance contrasts.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第15期4136-4140,4145,共6页 Journal of System Simulation
基金 Doctoral Fund of Ministry of Education of China(20040699015)
关键词 三维大脑分割 最大熵多阈值 免疫遗传算法 模拟退火 3D brain segmentation optimal entropy multi-thresholding immune genetic algorithm simulated annealing
  • 相关文献

参考文献1

二级参考文献8

  • 1陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433. 被引量:79
  • 2Kapur J N, Sahoo P K ,Wong A K C. A new method of gray level picture thresholding using the entropy of the histogram .Computer Vision, Graphics, and Image Processing, 1985, 29(2): 273 - 285. 被引量:1
  • 3Pal N R, Pal S K. A review on image segmentation techniques.Pattern Recognition, 1993, 26(9): 1277- 1294. 被引量:1
  • 4Pun T. A new method for gray-level picture thresholding using the entropy of the histogray. Signal Processing, 1980, 2(3): 223 -237. 被引量:1
  • 5Yen J C, Chang F J, Chang S. A new criterion for automatic multilevel thresholding. IEEE Trans. on Image Processing, 1995,4(3): 370 - 377. 被引量:1
  • 6Sahoo P K, Wong A K C. A survey of thresholding techniques.Computer Vision. Graphics, and Image Processing, 1988, 41 :233 - 260. 被引量:1
  • 7杜海峰.免疫克隆计算与人工免疫网络研究与应用,博士后研究工作报告,西安电子科技大学,2003. 被引量:1
  • 8焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224

共引文献20

同被引文献71

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部