期刊文献+

基于人工免疫的支持向量机模型选择算法 被引量:3

Model Selection Algorithm of SVM Based on Artificial Immune
下载PDF
导出
摘要 支持向量机中参数设置对训练支持向量机分类的精确度有不可忽视的影响。支持向量机参数的选取可看作参数的组合优化。免疫算法是一种有效的随机全局优化技术,它具有不易陷入局部最优解、解精度高、收敛速度快等优点。该文利用人工免疫算法进行支持向量机模型选择。该算法主要包括克隆选择、高频变异、受体编辑等操作。试验证明,该算法能够有效提高支持向量机分类的正确性。 The parameters setting for Support Vector Machine(SVM) in a training process impacts on the classification accuracy. The selection problem of SVM parameters is considered as a compound optimization problem. Immune algorithm is an efficient random global optimization technique. It has nice performances such as avoiding local optimum, high precision solution, and quick convergence. This paper proposes an immune algorithm applied to model selection of SVM. This algorithm includes clonal selection, hyper-mutation and receptor editing. Experimental results indicate that this method significantly improves the classification accuracy of SVM.
作者 姚全珠 田元
出处 《计算机工程》 CAS CSCD 北大核心 2008年第15期223-225,共3页 Computer Engineering
关键词 支持向量机 模型选择 免疫算法 Support Vector Machine(SVM) model selection immune algorithm
  • 相关文献

参考文献9

  • 1Vapnik V N. The Nature of Statistical Learning Theory[M]. New York, USA: Springer, 1995: 23-60. 被引量:1
  • 2Sanchez A D. Advanced Support Vector Machines and Kernel Methods[J]. Neurocomputing, 2003, 55(1): 5-20. 被引量:1
  • 3Muller K R, Mika S, Ratsch G, et al. An Introduction to Kernelbased Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-202. 被引量:1
  • 4罗印升,李人厚,张雷,刘芳.人工免疫算法在函数优化中的应用[J].西安交通大学学报,2003,37(8):840-843. 被引量:26
  • 5杨延彬.免疫学及检验[M].北京:人民卫生出版社,1999.1-65. 被引量:6
  • 6Zheng Hong, Zhang Jingxin, Nahavandi S. Learning to Detect Objects by Artificial Immune Approaches[J]. Future Generation Computer Systems, 2004, 20(7): 1197-1208. 被引量:1
  • 7Chapelle O, Vapnik V. Choosing Multiple Parameters for Support Vector Machines[J]. Machine Learning, 2002, 46(1): 131-159. 被引量:1
  • 8Murphy M. UCI-Benchmark Repository of Artificial and Real Data Sets[EB/OL]. (1995-09-15). http://www.ics.uci.edu/-mlearn/. 被引量:1
  • 9Smola A J. Learning with Kernels[D]. Berlin, Germany: Technical University of Berlin, 1998. 被引量:1

二级参考文献6

  • 1杨延彬.免疫学及检验[M].北京:人民卫生出版社,1999.1-65. 被引量:2
  • 2de Castro L, von Zuben F. Artificial immune system part I. basic theory and applications[R/OL] . http://www. dca. fee. unicamp.br/~lnmunes, 2002-02-15. 被引量:1
  • 3de Castro L, von Zuben F. Artificial immune system part Ⅱ:a survey of applications[R/OL]. http.//www. dca. fee. unicamp, br/~lnmunes, 2002-02-10. 被引量:1
  • 4Timmis J, Neal M, Hunt J. Artificial immune systems for data analysis[J].Biosystem,2000,55(1/3):143-150 被引量:1
  • 5Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System, Man, and Cybernetics , 1994,24(4):656~667. 被引量:1
  • 6王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351

共引文献29

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部